Question

E 4.20P) The figure shows ban diagram of a Si PN junction diode. Before solution choose suitable values of a,b and c and show

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer nummit In the above questPon the ban diagram o si pn junction dioele is shown :- Ecp tip cev Een aev EVP Ibev EF bin Eb) elections The carrier densities will change across the Junction is. If we apply reverse bias for a pan Junction, then mobi

Add a comment
Know the answer?
Add Answer to:
E 4.20P) The figure shows ban diagram of a Si PN junction diode. Before solution choose...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Ecp 4.20P) The figure shows ban diagram of a Si PN junction diode. Before solution choose...

    Ecp 4.20P) The figure shows ban diagram of a Si PN junction diode. Before solution choose suitable values of a,b and c and show this numbers clearly in a box. a) Calculate the carrier densities plot across the junction (n=1.5 100) b)If you apply reverse bias of 1 V how the carrier densities will change across the junction ?Calculate and plot. Icev Eip- - I a ev Ecn Evp -1 beva EF Ein Eva

  • N P n=10 p=109 1013 4.32P) The figure shows carrier densities of a Si PN junction...

    N P n=10 p=109 1013 4.32P) The figure shows carrier densities of a Si PN junction diode. Before solution choose suitable positive integer values of a and b (a>b) and show this numbers clearly in a box. a) Write the bias type and explain your reason. Calculate the bias voltage. (n=101) b) What are the equilibrium values of minority carriers? c) Calculate the hole concentration on the N side at x=0. d) Diffusion constants of electron and holes has Dn=cDp...

  • Problem 3: pn Junction -- Carrier Concentration Profiles The steady-state carrier concentrations inside a Si pn step ju...

    Problem 3: pn Junction -- Carrier Concentration Profiles The steady-state carrier concentrations inside a Si pn step junction diode maintained at room temperature are shown in the plot below: п or p (log scale Pp -106 10 102 a) Is the diode forward or reverse biased? Explain briefly. b) Do low-level injection conditions prevail in the quasi-neutral regions of the diode? Explain briefly. c) What are the p-side and n-side net dopant concentrations NA and ND, respectively? d) Determine the...

  • 3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018...

    3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018 cm-3 on the p-side and donor concentration of Nj on the n-side. The diode is forward biased and has a voltage of 0.6 V across it. The diode cross-sectional area is 1 mm2. The minority carrier recombination time, T, depends on the total dopant concentration, Ndopant (cm), through the following approximate empirical relation (5x 10-7)/(1 + 2 10-17N1°pan.) where T is in seconds. (a)...

  • 3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018 cm-3 on t...

    3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018 cm-3 on the p-side and donor concentration of Nj on the n-side. The diode is forward biased and has a voltage of 0.6 V across it. The diode cross-sectional area is 1 mm2. The minority carrier recombination time, T, depends on the total dopant concentration, Ndopant (cm), through the following approximate empirical relation (5x 10-7)/(1 + 2 10-17N1°pan.) where T is in seconds. (a)...

  • Taking pure silicon (Si) as an example, explain what is meant by the terms electron-hole generation...

    Taking pure silicon (Si) as an example, explain what is meant by the terms electron-hole generation and recombination, how they affect the electrical conductivity, and define what is meant by the "intrinsic carrier density", n. [5 marks] Q3. a) b) With the aid of both lattice and energy band diagrams, explain how n-type doping of Si is achieved and state two types of suitable dopant atoms. [7 marks] c) An n-type region on a Si wafer has a donor concentration...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT