Question

1. A steam power plant steam power plant operates with a high pressure of 5 MPa and has a oller exit temperature of 600°C rec
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2s State 1 Turbine inlet 9, = 5MPa, T, = 600c from supex heated steam table, his 3666-48 kilka , Sia 7.26 kilkg State 2: TurbState 3 condensor outlet, Sat llouid at usc hz=h = 187.81 KT kg. Sf=5370-637 KolkgK. State u Boiler inlet. Pump work wp=Vf deEntropy Generation : ms = 1 kgls. asg in boiler : (ASO) B = riscs-su) - 1(7-26-0-637) = 6.623 kwk. b) oso in Trobine: I (DSg)

Add a comment
Know the answer?
Add Answer to:
1. A steam power plant steam power plant operates with a high pressure of 5 MPa...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Thermodynamics A steam power plant operates with high pressure oft 4 MPa and hasleel receiving heat from a 700°C reservoir. The ambient air at 20°C provides cooling to maintain the water/vapor m...

    Thermodynamics A steam power plant operates with high pressure oft 4 MPa and hasleel receiving heat from a 700°C reservoir. The ambient air at 20°C provides cooling to maintain the water/vapor mixture in the condenser at 60°C. All components are ideal i.e., reversible) except the turbine which has an efficiency 92% of a reversible, isentropic process. Other than the irreversibility of the turbine, the power plant can be considered as a Rankine cycle. Determine the following quantities in the suggested...

  • Problem 3. Rankine Cycle (90 points) A steam power plant operates with high pressure of 4 MPa and has a boiler exit at 600°C receiving heat from a 700° C reservoir. The ambient air at 20°C provid...

    Problem 3. Rankine Cycle (90 points) A steam power plant operates with high pressure of 4 MPa and has a boiler exit at 600°C receiving heat from a 700° C reservoir. The ambient air at 20°C provides cooling to maintain the water/vapor mixture in the condenser at 60°C. All components are ideal (i.e., reversible) except the turbine which has an efficiency 92% ofa reversible isentropic process. Other than the irreversibility of the turbine, the power plant can be considered as...

  • Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...

    Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate: 1. The power output of the steam power plant 2. The thermal efficiency of the steam power plant Now,...

  • i) An ideal steam power plant operates between a high pressure of 40 bar and a...

    i) An ideal steam power plant operates between a high pressure of 40 bar and a low pressure of 0.2 bar. The cooling water in the condenser has a constant pressure of 1 bar. The pump requires a work input of 1.0 kJ/kg. Assume that the heat transfer to the surroundings for all the cycle components are negligible. For the properties in the table below, determine the (a) thermal efficiency, in %, (b) the mass flow rate of the cooling...

  • You are to analyze a simple steam power plant. At the boiler exit, the pressure is...

    You are to analyze a simple steam power plant. At the boiler exit, the pressure is 8 MPa and the temperature is 1000 °C. The turbine isentropic efficiency is 85%. The condenser pressure is 15 kPa and the water is a saturated liquid at the condenser exit. The pump isentropic efficiency is 80%. Answer the following: a) What is the quality at the exit in %, if the turbine is assumed isentropic? b) What is the work output of the...

  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • Consider a steam power plant that operates on a simple ideal Rankine cycle and has a...

    Consider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45 MW (Wnetout - Wtout - Wpin). Steam enters the isentropic turbine at 7 MPa and 500-C and is cooled in the condenser at a pressure of 10 kPa by running cooling water through the condenser (heat exchanger). Determine the following: (Note: Show the procedure of your solution for all parts) Boiler P3 7 MPa 3 T,-500 °C 2 Pump...

  • Superheated steam at 20 MPa, 560oC enters the turbine of a vapor power plant. The pressure...

    Superheated steam at 20 MPa, 560oC enters the turbine of a vapor power plant. The pressure at the exit of the turbine is 0.7 bar, and liquid leaves the condenser at 0.4 bar at 75oC. The pressure is increased to 20.1 MPa across the pump and the specific enthalpy is 338.14 kJ/kg. The turbine isentropic efficiency is 81%. Cooling water enters the condenser at 20oC with a mass flow rate of 70.7 kg/s and exits the condenser at 38oC. For...

  • A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of...

    A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 6 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 450◦C, and the mass flow rate of steam through the cycle is 50 kg/s. (a) Find the temperature, pressure and specific volume at states 1, 2, 3, and 4. (b) Find the heat supplied, heat rejected, work consumed by the pump, work produced by the turbine, net power generation,...

  • Question 2: A steam power cycle operates such that the steam exits boiler at 4 MPa,...

    Question 2: A steam power cycle operates such that the steam exits boiler at 4 MPa, 400C and the condenser pressure is 10 kPa. The efficiency of the turbine and pump is 85% and 90% respectively. a. Draw the process on a Ts diagram and calculate the thermal efficiency. b. If the plant produces 100MW of net power, - what is the steam flowrates in kg/hr? - If the plant uses natural gas as a fuel, determine the flowrate of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT