Question

Determine the function \psi(x).

image.png

(25 marks) Consider a wave packet defined by \(\psi(x)=\int_{-\infty}^{\infty} A(k) \cos k x d k,\) where \(A(k)\) is given by

$$ A(k)=\left\{\begin{array}{ll} 1 & \text { for } 0 \leq k \leq k_{0} \\ 0 & \text { otherwise } \end{array}\right. $$

The width of \(A(k)\) is thus equal to \(\Delta k=k_{0}\). (a) Determine the function \(\psi(x)\). (b) What is the value of \(\psi(0) .\) (c) Sketch the function \(\psi(x)\). (d) The function \(\psi(x)\) is sharply peaked at \(x=0\). Define the width of the function by \(\Delta x=2\left|x_{0}\right|,\) where \(x_{0}\) is the position where \(\psi(x)\) first vanishes. Calculate the product \(\Delta x \Delta k\). [Remark: This example illustrates the concept that the widths of a wave packet \(\psi(x)\) and that of its Fourier transform \(A(k)\) are directly related. \(]\)

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Determine the function \psi(x).
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • (2 points) The area A of the region S that lies under the graph of the...

    (2 points) The area \(A\) of the region \(S\) that lies under the graph of the continuous function \(f\) on the interval \([a, b]\) is the limit of the sum of the areas of approximating rectangles:$$ A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x $$where \(\Delta x=\frac{b-a}{n}\) and \(x_{i}=a+i \Delta x\).The expression$$ A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{8 n} \tan \left(\frac{i \pi}{8 n}\right) $$gives the area of the function \(f(x)=\) on...

  • Determine the energy of the particle if the proposed wave function satisfies the Schrödinger equation for x < 0.

    A fellow student proposes that a possible wave function for a free particle with mass \(m\) (one for which the potential-energy function \(U(x)\) is zero ) is$$ \psi(x)=\left\{\begin{array}{ll} e^{-k x}, & x \geq 0 \\ e^{+\kappa x}, & x<0 \end{array}\right. $$where \(\kappa\) is a positive constant. (a) Graph this proposed wave function.(b) Determine the energy of the particle if the proposed wave function satisfies the Schrödinger equation for \(x<\)0.(c) Show that the proposed wave function also satisfies the Schrödinger equation...

  • A free proton has a wave function Psi (x) = A sin (kx), where k =...

    A free proton has a wave function Psi (x) = A sin (kx), where k = 1.2 times 10^10 m^-1 What is the proton's lambda? What is the proton's momentum? What is the proton's speed? Normalize Psi (x) if the wave only exists inside an infinite square well with width a = 2.1 m, (so that Psi (x) = A sin (kx) between 0 < x < a and Psi (x) = 0 otherwise).

  • Determine the constant N in terms of a

    The wave function of a particle is given by \(\psi(x)=N / \left(x^{2}+a^{2}\right),\) where \(N\) and \(a\) are constants. The function is defined along the real axis \([-\infty, \infty] .\) (a) Determine the constant \(N\) in terms of \(a\). (b) What is the probability of finding the particle inside the interval \([-a, a] ?\)

  • Consider a potential well defined as U(x) =  for x < 0, U(x) = 0 for 0 < x < L, and U(x) = U0 > 0 for x > L (see the following figure).

    Consider a potential well defined as \(U(x)=\infty\) for \(x<0, U(x)=0\)for \(0<x<L,\)and \(U(x)=U_{0}>0\) for \(x>L\) (see the following figure). Consider a particle with mass \(m\) and kinetic energy \(E<U_{0}\)that is trapped in the well. (a) The boundary condition at the infinite wall ( \(x=\)0) is \(\psi(x)=0\). What must the form of the function \(\psi(x)\) for \(0<x<L\)be in order to satisfy both the Schrödinger equation and this boundary condition? (b) The wave function must remain finite as \(x \rightarrow \infty\). What must...

  • A certain FM signal is given by:

    A certain FM signal is given by: \(s(t)=A_{c} \cos \left[2 \pi f_{c} t+2 \pi k_{f} \int_{0}^{t} m(\tau) d \tau\right]\). Estimate the bandwidth of \(s(t)\) using Carson's rule. Assume the spectrum of m(t) is given by:$$ \begin{array}{rr} M(f)=\operatorname{rect}(f) \text { and } \operatorname{rect}(f)=1 & -10 \mathrm{kHz} \leq f \leq 10 \mathrm{kHz} \\ \operatorname{rect}(f)=0 & |f| \geq 10 \mathrm{kHz} \end{array} $$Assume \(k_{f}=2 \mathrm{kHz} /\) volt. Also estimate the bandwidth using Figure 4.9. Compare your results.(Hint: Consider your response to question 5.) from...

  • Use Definition 7.1.1. DEFINITION 7.1.1 Laplace Transform

    Use Definition 7.1.1.DEFINITION 7.1.1 Laplace TransformLet \(f\) be a function defined for \(t \geq 0\). Then the integral$$ \mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t $$is said to be the Laplace transform of \(f\), provided that the integral converges.Find \(\mathscr{L}\{f(t)\}\). (Write your answer as a function of s.)\(f(t)=\left\{\begin{array}{lr}t, & 0 \leq t<1 \\ 1, & t \geq 1\end{array}\right.\)

  • Compute the Fourier cosine coefficients for f(x)

    Let \(f(x)= \begin{cases}0 & \text { for } 0 \leq x<2 \\ -(4-x) & \text { for } 2 \leq x \leq 4\end{cases}\)- Compute the Fourier cosine coefficients for \(f(x)\).- \(a_{0}=\)- \(a_{n}=\)- What are the values for the Fourier cosine series \(\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{4} x\right)\) at the given points.- \(x=2:\)- \(x=-3\) :- \(x=5:\)

  • Weibull Likelihood function

    \(\mathrm{T}\) is a failure time following a Weibull distribution. Consider \(\mathrm{Y}=\log \mathrm{T}\) where \(\mathrm{Y}\) has an extreme value distribution with survival function$$ S_{Y}(y)=e^{-\epsilon^{\frac{n \mu}{\sigma}}} $$where \(-\infty<\mu<\infty\) is the location parameter and \(\sigma>0\) is the scale parameter. Expressing with parameters \(\mu\) and \(\varphi=\log \sigma\). Assume that failure times of subjects under study arise from Weibull distribution. Let \(x_{1}, \ldots, x_{n}\) be the observed failure or right censoring times for n subjects. Each subject i (i = \(1, \ldots, \mathrm{n}\) ) has...

  • A particle moving in one dimension is described by the wave function ...

    A particle moving in one dimension is described by the wave function$$ \psi(x)=\left\{\begin{array}{ll} A e^{-\alpha x}, & x \geq 0 \\ B e^{\alpha x}, & x<0 \end{array}\right. $$where \(\alpha=4.00 \mathrm{~m}^{-1}\). (a) Determine the constants \(A\) and \(B\) so that the wave function is continuous and normalized. (b) Calculate the probability of finding the particle in each of the following regions: (i) within \(0.10 \mathrm{~m}\) of the origin, (ii) on the left side of the origin.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT