Question

Problem 6. (3points) Consider a p-type Si sample with doping concentration NA 1018 cm3. Determine the energy difference EF-Ev. Given that Nv = 1.08 x 1019 cm

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Problem 6. (3points) Consider a p-type Si sample with doping concentration NA 1018 cm3. Determine the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • For a Si p-n junction with p-type doping of 1 x 10^16/cm3 and n-type doping of...

    For a Si p-n junction with p-type doping of 1 x 10^16/cm3 and n-type doping of 1 x 10^19/cm3, calculate the built-in potential Vb at 300K, dark, thermal equilibrium condition. Please show the equations and parameters used in the calculation and the value of Ec-Ef, Ef-Ev, and Vb. Please draw a band structure similar to the one in lecture 5 slide 6 based on your results, please also label Ec, Ev, Vb, and Ef in the drawing.

  • Applied quantum mechanics 1. Calculate the carrier concentrations (p and n) for Si at 300k for...

    Applied quantum mechanics 1. Calculate the carrier concentrations (p and n) for Si at 300k for the following doping concentrations: 2. (a) ND = 1015/cm3 (b) NA = 1018/cm3 (c) ND = 5 x 1017/cm3 Calculate the majority and minority carriers for each side of an N+P junction if ND = 2 x 1017/cm3 for the n-side, and NA = 1014/cm3 for the p-side. Assume the semiconductor is Si and the temperature is 300K. 3. Determine the energy of: (a)...

  • Q1) A diode has a doping of No- 1019 /cm3 on the n-type side and NA 101/cm3 on the p-type side. W...

    Q1) A diode has a doping of No- 1019 /cm3 on the n-type side and NA 101/cm3 on the p-type side. What are the a) width of depletion region, b) width of depletion region in n side, c) width of depletion region in p side, d) junction potential at zero bias, e) junction width at a reverse bias of 13 V, and f) maximum electric field in zero bias just in the middle of the P-N junction at room temperature?...

  • 6. A long p-type Si bar, NA-5x1016 cm3, is optically excited and creates a low level of steady st...

    6. A long p-type Si bar, NA-5x1016 cm3, is optically excited and creates a low level of steady state excess carriers at on the left side of the bar (x-o) creating a quasi-Fermi level separation of (E-Fp)-0.42 eV. The carriers diffuse to the right and decay exponentially. Electron and hole lifetimes are both 5 μs Also, it is room temperature, D,-18 cm2/s, Dn-36 cm3/s, and n#1.5x1010 /cm? what is the electron . concentration and current density (A/cm2) at x 50...

  • 14 Q1. Given a NA = 10 /cm" doped Si sample a) b) c) Calculate Ef...

    14 Q1. Given a NA = 10 /cm" doped Si sample a) b) c) Calculate Ef as a function of Temperature T at 500K intervals from 3000K to 5000K. Any conclusion could be drawn from a) part? If the donor has ND-1014/cm3 to replace the NA, what is the Ef at 3000K, 4000K and 5000K The band gap affected by temperature should be included. Q2. At 300K, please find the doping limit of both n-type and p-type Ge to have...

  • Correct answer is A PartYour AnswerCorrect AnswerToleranceMarksComment 1 None 1.0 196 0.00 Incorrect Total:0.0 Consider an...

    Correct answer is A PartYour AnswerCorrect AnswerToleranceMarksComment 1 None 1.0 196 0.00 Incorrect Total:0.0 Consider an n-type silicon at T-300 K. Determine the maximum doping at which the Boltzmann approximation is still valid. Assume the limit is such that Ec- Ef 2 3kBT. Nc 2.80 x 1019 states/cm3 and kBT 0.0259 eV at T 300 K. Please choose one: a) O 1.39 x 1018 cm-3 b) 1.49 x 1018 cm-3 c)04.06 x 1018 cm3 d)O 2.02 x 1017 cm-3 e)OIndeterminable

  • Problem 3 (25 points) Consider a MOS capacitor with p polysilicon gate and p-type silicon substrate with NA 1016 cm3. Ef- Ev in the polysilicon gate. Assume the following parameters: I200A, , 1.5x10°...

    Problem 3 (25 points) Consider a MOS capacitor with p polysilicon gate and p-type silicon substrate with NA 1016 cm3. Ef- Ev in the polysilicon gate. Assume the following parameters: I200A, , 1.5x10° cm*,E, -3.9x8.854x104FIcm ox a) (5 points) Calculate the metal-semiconductor work function difference. b) (5 points) Calculate the surface potential at the threshold inversion. c) (5 points) Calculate the depletion width (in μm) at the threshold inversion. d) (5 points) Calculate the flat band voltage. e) (5 points)...

  • 1. Consider a p-n junction diode with doping concentrations: NA6.5x1015 cm3 and ND 107 cm3 in...

    1. Consider a p-n junction diode with doping concentrations: NA6.5x1015 cm3 and ND 107 cm3 in the p- and n-sides, respectively. (a) Calculate the free electron and hole concentrations in both p- and n-sides' neutral regions. (b) Find the barrier height and the built-in voltage. (c) Sketch the energy band diagram of the complete p-n junction. Mark all energy levels including the barrier height and show the energy level values. (d) Calculate the total depletion width under zero bias. (e)...

  • A piece of p-type GaAs is doped with a net impurity concentration of N Na-5 × 1018 m-3. Is it deg...

    A piece of p-type GaAs is doped with a net impurity concentration of N Na-5 × 1018 m-3. Is it degenerate or nondegenerate? Find its electron and hole concentrations and its Fermi level at 300 K. How much is the shift of the Fermi level, measured from the intrinsic Fermi level, caused by the doping of the impurity? Compare the results obtained in this problem for the p-type GaAs with those found in Example 12.3 for the n-type GaAs of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT