Question











the principal of power generation using nuclear as she power generation using nuclear as shown in the following Please descri
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
the principal of power generation using nuclear as she power generation using nuclear as shown in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop...

    A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power of 3 MW. Steam exits the reactor core at 100 bar, 52O degree C and expands through the turbine to the condenser pressure of 1 bar. Saturated liquid exits the condenser and is pumped to the reactor pressure of l00 bar. Isentropic efficiencies of the turbine and pump are 81% and 78%, respectively. Cooling water enters the condenser at 15 degree...

  • A power plant operates on the Rankine cycle and uses a nuclear reactor to generate the steam that enters the turbine

    A power plant operates on the Rankine cycle and uses a nuclear reactor to generate the steam that enters the turbine. The condenser receives cooling water from a chiller and discharges the used water to a nearby lake. Kinetic and potential effects are negligible. Stray heat transfer from the turbine, pump, and condenser can be neglected. Data are provided in the table for the system operating at steady state. 

  • 6.133 Figure P6.133 shows a simple vapor power cycle operating at steady state with water as...

    6.133 Figure P6.133 shows a simple vapor power cycle operating at steady state with water as the working fluid Data at key locations are given on the figure. Flow through the turbine and pump occurs isentropically. Flow through the steam generator and condenser occurs at constant pressure. Stray heat transfer and kinetic and potential energy effects are negligible. Sketch the four processes of this cycle in series on a T-s diagram. Determine the thermal efficiency P 20 MPa T 700°C...

  • A combined cycle power plant consists of two gas turbines; cach produces a net power of...

    A combined cycle power plant consists of two gas turbines; cach produces a net power of 160 MW, and a 70 MW steam power cycle. The combustion of the fuel in the combustion chamber produces hot gases at 1400°C. The hot gases leaving the gas turbines are used to generate steam through the heat recovery steam generator (Boiler). The hot gases enter the heat recovery steam generator at 880°C and leaves at 660°C. Water enters the isentropic pump as saturated...

  • A power plant using a Rankine power generation cycle and steam operates at a temperature of...

    A power plant using a Rankine power generation cycle and steam operates at a temperature of 80 oC in the condenser, a pressure of 2.5 MPa in the boiler, and a maximum boiler temperature of 700 oC. Draw the two cycles described below on a temperature-entropy diagram for steam, and answer the following questions. a) What is the efficiency of this power plant, assuming the pump and turbine operate adiabatically and reversibly? What is the temperature of the steam leaving...

  • A nuclear power plant generates 3000 MW of heat energy from nuclear reactions in the reactor's...

    A nuclear power plant generates 3000 MW of heat energy from nuclear reactions in the reactor's core. This energy is used to boil water and produce high-pressure steam at 320 ∘C. The steam spins a turbine, which produces 1000 MW of electric power, then the steam is condensed and the water is cooled to 25∘C before starting the cycle again. Part A: What is the maximum possible thermal efficiency of the power plant? Part B: Cooling water from a river...

  • Question 2: A steam power cycle operates such that the steam exits boiler at 4 MPa,...

    Question 2: A steam power cycle operates such that the steam exits boiler at 4 MPa, 400C and the condenser pressure is 10 kPa. The efficiency of the turbine and pump is 85% and 90% respectively. a. Draw the process on a Ts diagram and calculate the thermal efficiency. b. If the plant produces 100MW of net power, - what is the steam flowrates in kg/hr? - If the plant uses natural gas as a fuel, determine the flowrate of...

  • In Geothermal-steam power cycle, the source of heat is the hot water from well. The heat...

    In Geothermal-steam power cycle, the source of heat is the hot water from well. The heat exchanger receive hot water at Tg1= 105 oC and the water leaves at 40 oC as shown in Figure 3. Steam exits the boiler at 40 bar, 300 oC, and it exits the turbine at 1 bar. Saturated liquid water exits the condenser at 1 bar. The plant operate to generate 20 MW electric power with generator efficiency of 0.95. The isentropic efficiency of...

  • Steady-state operating data for a simple steam power plant are provided in the figure 7. below....

    Steady-state operating data for a simple steam power plant are provided in the figure 7. below. Heat transfer and kinetic and potential energy effects can be ignored. Determine the (a) thermal efficiency and (b) the mass flow rate of the cooling water, in kg per kg of steam flowing Qie/m=3400 kJ/kg P1 4 MPa T 600°C Power out Turbine P2=0.2 bar 2 Steam saturated Cooling water in at T's 15°C generator vapor Condenser Cooling water out at T6 35°C Pump...

  • Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...

    Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate: 1. The power output of the steam power plant 2. The thermal efficiency of the steam power plant Now,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT