Question

Combustion gases enter an adiabatic gas turbine at 1540 F degrees and 120 psia and leave...

Combustion gases enter an adiabatic gas turbine at 1540 F degrees and 120 psia and leave at 60 psia with a low velocity. Treating the combustion gases as air and assumming an isentropic efficiency of 82 percent, determine the work output of the turbine. Assume that combustion gases can be treated as an ideal gas with variable specific heats.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1540 t 120 Psiq 941 Assuming ideal gas as Air and solving it. 60 Psta at T,= 1540°F ~ 2000R from the property table for air F

Add a comment
Know the answer?
Add Answer to:
Combustion gases enter an adiabatic gas turbine at 1540 F degrees and 120 psia and leave...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Combustion gases enter an adiabatic gas turbine at 800oC and 900 kPa and leave at 100...

    Combustion gases enter an adiabatic gas turbine at 800oC and 900 kPa and leave at 100 kPa with a low velocity. Treating the combustion gases as air (R = 0.2870 kPa*m3/kg, cp = 1.005 kJ/kg*K, k = 1.4) and assuming an isentropic efficiency of 82 percent, determine the work output of the turbine and the exit temperature.

  • Air initially at 120 psia and 500*F is expanded by an adiabatic turbine to 15 psia...

    Air initially at 120 psia and 500*F is expanded by an adiabatic turbine to 15 psia and 200* F. Assuming air can be treated as an ideal gas and has variable specific heat. a) Determine the specific work output of the actual turbine (Btu/lbm). b) Determine the amount of specific entropy generation during the irreversible process (Btu/lbm R). c) Determine the isentropic efficiency of this turbine (%). d) Suppose the turbine now operates as an ideal compressor (reversible and adiabatic)...

  • 3a. A gas-turbine power plant operates on the simple Brayton cycle between the pressure limits of...

    3a. A gas-turbine power plant operates on the simple Brayton cycle between the pressure limits of 14.7 and 200 psia. Air enters the compressor at 77°F at a rate of 28 lbm/s and leaves at 750°F. Fuel is burned in the combustion chamber and the combustion gases enter the turbine at 2000°F. Combustion gases leave the turbine whose isentropic efficiency is 85 percent. Treating the combustion gases as air and using constant specific heats evaluated at 900°F, determine (a) the...

  • Problem 1 (Marks 3) Smithfield power station in NSW, Australia operates on 4 gas turbines. Each of the gas turbine unit...

    Problem 1 (Marks 3) Smithfield power station in NSW, Australia operates on 4 gas turbines. Each of the gas turbine unit operates on the regenerative Brayton Cycle between the pressure limits of 100 kPa and 700 kPa. Air enters the compressor at 30°C at a rate of 12.6 kg/s and leaves at 260°C. It is then heated in a regenerator to 400°C by hot combustion gases leaving the turbine. Diesel fuel with heating value of 42,000 kJ/kg is burned in...

  • NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state...

    NO INTERPOLATION REQUIRED Air enters an adiabatic turbine at 1000 kPa and 1625 degrees C (state 1) with a mass flow rate of 5 kg/s and leaves at 100 kPa the isentropic efficiency of the turbine is 85%. Neglecting the kinetic energy change of the steam, and considering variable specific heats, determine: a. the isentropic power of the turbine Isentropic power in kW b. the temperature at the turbine exit temperature at exit in degrees C c. the actual power...

  • MECH 3312 (Thermodynamics) Extra Credits01 Spring 2019 Q2.0 The gas-turbine portion of a combined...

    MECH 3312 (Thermodynamics) Extra Credits01 Spring 2019 Q2.0 The gas-turbine portion of a combined gas-steam power plant has a pressure ratio of 18. Air enters the compressor at 350 K at a rate of 15.5 kg/s and is heated to 1580 K in the combustion chamber. The combustion gases leaving the gas turbine are used to heat the steam to 417'C at 10 MPa in a heat exchanger. The combustion gases leave the heat exchanger at 430 K. The steam...

  • Consider the combined gas-steam power cycle,The topping cycle is a gas-turbine cycle that has a pressure ratio of 8.Air enters the compressor at 300K and the turbine at 1300K.The isentropic efficiency...

    Consider the combined gas-steam power cycle,The topping cycle is a gas-turbine cycle that has a pressure ratio of 8.Air enters the compressor at 300K and the turbine at 1300K.The isentropic efficiency of the compressor is 80 percent, and that of the gas is 85 percent.The bottoming cycle is a simple ideal Rankine cycle operating between the pressures limits of 7 MPa and 5 KPa.Steam is heated in a heat exchanger by the exahust gases to a temperature of 5000C.The exhaust...

  • 7-132 Hot combustion gases enter the nozzle of a turbojet engine at 260 kPa, 7478C, and...

    7-132 Hot combustion gases enter the nozzle of a turbojet engine at 260 kPa, 7478C, and 80 m/s, and they exit at a pressure of 85 kPa. Assuming an isentropic efficiency of 92 percent and treating the combustion gases as air, determine (a) the exit velocity and (b) the exit temperature.

  • Develop an excel file to solve the following problem: Air enters an adiabatic nozzle at 45...

    Develop an excel file to solve the following problem: Air enters an adiabatic nozzle at 45 psia and 940F with a low velocity and exits at 650ft/s. Considering constant specific heats at room temperature, investigate the effect of the nozzle efficiency on the exit temperature (actual) and the pressure. Plot the temperatures, in degrees R (actual and isentropic) and the pressure, in psia as function of the nozzle efficiency. Vary the efficiency from 70% to 100%. Repeat for an inlet...

  • Question 6 Air at the inlet of an ideal (reversible-adiabatic) compressor is at 100 kPa and...

    Question 6 Air at the inlet of an ideal (reversible-adiabatic) compressor is at 100 kPa and 2685o. The compressor exit pressure is at 620.4 kPa. Determine the compressor power (kw Calculate the power based on variable specific heats (i.e.,use the ideal gas table for air). Selected Answer Incorrect [None Given] Rgl_e 尻(T) W, m(m-h.) Correct Answer: Correct -47.41% Question 7 Nitrogen gas expands in an adiabatic nozzle from 800 kPa 600x, to a final pressure of 98.26 kPa. Calculate the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT