Question

A Rankine power cycle with reheat uses water as the working fluid. The inlet conditions of the first stage turbine are 14MPa

0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution: 600c the 1st Stage turbine, J = Given, Inlet temperature of Inlet pressure P = 14MPa = 140 bar -0.85 I sentropic efsteam tables, Now from the mollier chart and hi = 3591.94 Kilky h5 : 3674085 Kilis h2= 3642042 Kblys h6= 3190 kilks ha= hy +work of the tesbines, W7o Chi - has) +(hs hus) ths - hss) the th=) = 0.85(833-33+ 341152 +876-47+ 345.71) = 38921031(kil 13)Heat supplied, or = Chr. hg) + (ha-has) = 3426.452 +(3680– 2758.61) z 4357.842 kilks work done by the turbine, wy = Et [ch, -as if we choose 35 bar and 0.88 dryness fraction, the efficiency may be some what high. Try that one.

Add a comment
Know the answer?
Add Answer to:
A Rankine power cycle with reheat uses water as the working fluid. The inlet conditions of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a power plant with water as working fluid that operates on a reheat Rankine cycle...

    Consider a power plant with water as working fluid that operates on a reheat Rankine cycle and has a net power output of 75 MW. Steam enters the high-pressure turbine at 10 MPa and 400°C and the low-pressure turbine at 1 MPa and 400°C. Water leaves the condenser as a saturated liquid at a pressure of 100 kPa. The isentropic efficiency of the high-pressure turbine is 85% and the low-pressure turbine in 100%. The pump has an isentropic efficiency of...

  • Problem 8.021 SI Water is the working fluid in a Rankine cycle with reheat. Superheated vapor...

    Problem 8.021 SI Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine at 10 MPa, 520°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 520°C. The pump and each turbine stage have an isentropic efficiency of 80%. Determine for the cycle: (a) the heat addition, in kJ per kg of steam entering the first-stage turbine. (b) the percent thermal efficiency....

  • An ideal reheat Rankine cycle with water as the working fluid operates the inlet of the...

    An ideal reheat Rankine cycle with water as the working fluid operates the inlet of the high-pressure turbine at 8000 kPa and 450°C, the inlet of the low-pressure turbine at 300kPa and 500°C, and the condenser at 10 kPa. Determine the mass flow rate through the boiler needed for this system to produce a net 5000 kW of power and the thermal efficiency of the cycle.

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 8 MPa, 480℃, and the condenser pressure is 8 kPa. Steam expands through the first stage turbine to 700 kPa and then is reheated to 480℃. Assumptions: see problem 1 . Determine for the cycle(a) the rate of heat addition, in kJ per kg to the working fluid in the steam generator.(b) the thermal efficiency.(c) the rate of heat transfer from the...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • Consider an ideal Rankine cycle with reheat based on water as the working fluid. The steam...

    Consider an ideal Rankine cycle with reheat based on water as the working fluid. The steam at the high-pressure turbine inlet is at 10 MPa and 700 K and it is saturated steam at the outlet The steam is reheated to 675 K before it enters the low pressure turbine. The pressure is reduced to where the steam is let down to 150 kPa The mass flow rate is 60 kg/s, 1. Draw the T-s diagram; [5 2. State all...

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle....

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 700°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 24 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Determine...

  • Problem 1. (40) Water is the working fluid in an ideal Rankine cycle with reheat. Superheated...

    Problem 1. (40) Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 12 MPa, 480 °C and the pressure at the exit of the second stage turbine is 8 kPa. Steam expands through the first stage turbine to 1 MPa and then is reheated to 440 °C. Saturated liquid water leaves the condenser. After the pump, pressure goes back to 12 MPa. Find: (1) Sketch the process on a T-s diagram...

  • A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa...

    A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 40 kPa. At the entrance to the turbine, the temperature is 380 °C. The isentropic efficiency of the turbine is 88 %, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 5.9 °C. The boiler is sized for a mass flow rate of 17 kg/s. Determine the following values. °C m®/kg 1 kJ/kg (1)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT