Question

Steam condenses at 80ºC as it flows inside a horizontal tube with an inner diameter of...

Steam condenses at 80ºC as it flows inside a horizontal tube with an inner diameter of 5 cm. The mass flow rate is 0.5 kg/s and the quality is x=0.75. Find the heat transfer coefficient.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution to reate weater propert propertos at doe. 8 371.8 Kgfon3 M = 0.3544103 Pars. = 971.8o legfons K = 0.670 walmark, fs

Add a comment
Know the answer?
Add Answer to:
Steam condenses at 80ºC as it flows inside a horizontal tube with an inner diameter of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • B Steam flows in a steel pipe, which is insulated by gypsum plaster. The inner and...

    B Steam flows in a steel pipe, which is insulated by gypsum plaster. The inner and outer diameter of the pipe are 8 cm and 6 cm respectively with pipe length of 20-m. The thickness of gypsum plaster which wraps the pipe is 4 cm. The heat transfer coefficient of the inner pipe and outer insulation are 800 W/m2.°C and 200 W/m2.°C with inner pipe temperature of 200°C and outer insulator temperature of 10°C. The thermal conductivity of the pipe...

  • A concentric tube heat exchanger for cooling lubricating oil is comprised of a thin-walled inner tube...

    A concentric tube heat exchanger for cooling lubricating oil is comprised of a thin-walled inner tube of 25 mm diameter carrying water and an outer tube of 45 mm diameter carrying the oil. The mass flow rates of both fluids are 0.1 kg/s. The exchanger operates in counter-flow with an overall heat transfer coefficient of 60 W/m2

  • Water flows through a horizontal tube of diameter 2.0 cm that is joined to a second...

    Water flows through a horizontal tube of diameter 2.0 cm that is joined to a second horizontal tube of diameter 1.0 cm. The pressure difference between the tubes is 15 kPa. The density of water is 1000 kg/m. Treat the water as an ideal fluid. Find the speed of flow in the first tube. 1.41 m/s 1.73 m/s 2.00 m/s 1.00 m/s

  • Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and...

    Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows through the shell, and hot water flows inside the single copper tube that has an inner diameter of 20 mm, a wall thickness of 2 mm, and a length of 3 m per pass. The water enters at 360 K at a mass flow rate of 0.2 kg/s and leaves at 300 K. The inlet and outlet temperatures...

  • A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of...

    A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of 25 mm diameter carrying water and an outer tube of 45 mm diameter carrying the oil. The exchanger operates in countercurrent flow with an overall heat transfer coefficient of 55 W/m2 K and the tabulated average properties given below. Mass flow rates of oil and water are both 0.1 kg/s, oil enters the exchanger at 100°C, and water enters the exchanger at 30°C. (a)...

  • Steam in a heating system flows through a tube whose height (H), outer diameter (D), and...

    Steam in a heating system flows through a tube whose height (H), outer diameter (D), and outer surface temperature (T) are 1m, 3m and 120°C respectively. Circular aluminium fins (k = 180 W/m.°C) of outer diameter D, = 6cm and constant thickness t=2mm are attached to the tube as shown in the figure. The space between the fins is 3 mm. Heat is transferred to the surrounding air at 25°C with a heat transfer coefficient of h = 60 W/m².°C....

  • Steam in a heating system flows through a 1-m long tube whose outer diameter is DI...

    Steam in a heating system flows through a 1-m long tube whose outer diameter is DI = 4 cm and whose walls are maintained at a temperature of T, = 120 °C. Circular fins (k = 46 W/m. °C) of outer diameter D2 = 8 cm and constant thickness t= 3 mm are attached to the tube, as shown in the figure. The space between the fins is 7 mm. Heat is transferred to the surrounding air at T =...

  • PROBLEM 3 (45 points) The condenser of a large steam power plant is a heat exchanger...

    PROBLEM 3 (45 points) The condenser of a large steam power plant is a heat exchanger in which steam is condensed to liquid water. Assume the condenser to be a parallel flow shell-and-tube heat exchanger consisting of a single shell and 1x10 tubes, each executing two passes. The inner diameter of tubes is D = 50 mm and its thickness is 5 mm (Do not ignore the thickness). The steam condenses on their outer surface. Thermal conductivity of the tube...

  • Problem 2 A brass tube of inner and outer diameters D,-2 cm and Do-3 cm, respectively, is used to...

    Problem 2 A brass tube of inner and outer diameters D,-2 cm and Do-3 cm, respectively, is used to transfer heat from ambient air flowing across the tube to cold refrigerant (R-22) flowing inside the tube. The ambient air is flowing at un-0.1 m/s, and To 30°C. The cold refrigerant flow rate is m 1 gs, and its mean temperature is Tm-20°C. (a) Find the overall heat transfer coefficient, UA (b) To enhance the heat transfer, 16 straight fins of...

  • 1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C...

    1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C with a velocity of 80 m/s. Calculate the velocity of the water at the tube inlet and the inlet volume flow rate. [5-14] 2. Air enters a nozzle steadily at 50 psia, 140°F, and 150 ft/s and leaves at 14.7 psia and 900 ft/s. The heat loss from the nozzle is estimated to be 6.5...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT