Question

I Review Learning Goal: To use the principle of linear impulse to determine the change in velocity of a box subject to multipReview Submit Part B Learning Goal: To use the principle of linear impulse to determine the change in velocity of a box subje1 Review Learning Goal: To use the principle of linear impulse to determine the change in velocity of a box subject to multipM Review vuruc IL UMS Submit Learning Goal: To use the principle of linear impulse to determine the change in velocity of a bII Review Value Units Submit Learning Goal: To use the principle of linear impulse to determine the change in velocity of a b

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Giver m=40kg fi=300N O=20 Fa=GON > Ficos. FR Uk=0.14 MIN t=13 sec (A) The of NP Magnitude Normal force my + Fisine 40x9-81) +

(f) velocity V=utat of Block offee t=13sec frorizontal xt - f Coso-fa- MIN xt 3000 Cos (20)-80-0.148295 X3 40 V= 3.815813 V=4

Hope this helps

Please feel free to comment on any further queries

All the best :)

Add a comment
Know the answer?
Add Answer to:
I Review Learning Goal: To use the principle of linear impulse to determine the change in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A Review Part C Learning Goal: To use the principle of linear impulse and momentum to...

    A Review Part C Learning Goal: To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times. The equation of motion for a particle of mass m can be written as dv ΣF - = ma By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum =ma A stop block, s prevents a crate from sliding down a 0...

  • Principle of Impulse and Momentum 307 > Part A - Angular velocity of the pulley Learning...

    Principle of Impulse and Momentum 307 > Part A - Angular velocity of the pulley Learning Goal: To be able to solve problems involving force, moment, velocity and time by applying the principle of impulse and momenturn to rigid bodies The principle of impulse and momentum states that the sum of all impulses created by the external forces and moments that act on a rigid body during a time interval is equal to the change in the linear and angular...

  • Learning Goal: To determine the state of stress in a solid rod using the principle of...

    Learning Goal: To determine the state of stress in a solid rod using the principle of superposition. A solid rod has a diameter of e = 55 mm and is subjected to the loading shown. Let a = 190 mm, b = 220 mm , c = 350 mm, d = 240 mm , and P = 4.0 kN. Take point A to be at the top of the circular cross-section. (Figure 1) Figure < 1 of 2 b В...

  • Find part C < Homework for MO2.5 Principle of Linear Impulse and Momentum 3 of 21...

    Find part C < Homework for MO2.5 Principle of Linear Impulse and Momentum 3 of 21 Review Learning Goal: To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times. The equation of motion for a particle of mass m can be written as Part A F = ma= m dv By rearranging the terms and integrating, this equation A jetliner of mass 8.54 104...

  • Learning Goal: To use the principle of superposition to determine the total deflection in a cylindrical...

    Learning Goal: To use the principle of superposition to determine the total deflection in a cylindrical rod due to a static loading. A steel rod (E= 200 GPa) is subjected to the load shown, where P = 2800 kN. A gap a = 1.90 mm exists before the load is applied. The elongated rod contacts the top surface at C'. Assume the mass of the rod is negligible. The values for the figure below are d = 0.900 m, e...

  • Solve for E please Review (MR).= -2.88 kN-m Submit Previous Answers Learning Goal: To determine the...

    Solve for E please Review (MR).= -2.88 kN-m Submit Previous Answers Learning Goal: To determine the location and direction of a single equivalent force for a coplanar force system. The frame shown in (Figure 1) has dimensions H = 3.1 m and L = 0.9 m and is subjected to the forces P1 = 4.5 kN, P2 = 8.5 kN, and P3 = 11.5 KN. Force P3 is applied Ay = 0.4 m down from the top. ✓ Correct Part...

  • 037 CH 19.2 1 of 4> Principle of Impulse and Momentum Constants Part A - Angular velocity of the pulley Learning Goal The pulley shown (Figure 1) has a moment of inertia IA 0.900 kg m2, a radius r...

    037 CH 19.2 1 of 4> Principle of Impulse and Momentum Constants Part A - Angular velocity of the pulley Learning Goal The pulley shown (Figure 1) has a moment of inertia IA 0.900 kg m2, a radius r 0.300 m, and a mass of 20.0 kg A cylinder is attached to a cord that is wrapped around the pulley. Neglecting bearing friction and the cord's mass express the pulley's final angular velocity in terms of the magnitude of the...

  • Review Learning Goal: To use the superposition principle to find the state of stress on a...

    Review Learning Goal: To use the superposition principle to find the state of stress on a beam under multiple loadings The beam shown below is subjected to a horizontal force P via the rope wound around the pulley. The state of stress at point A is to be determined. Part A - Support Reactions and Internal Loading Determine the support reactions Cy and Cz and the internal normal force, shear force, and moment on the cross-section containing point A. Express...

  • Learning Goal: To solve for the support reactions of a frame. The frame shown in (Figure...

    Learning Goal: To solve for the support reactions of a frame. The frame shown in (Figure 1) is supported by a pin at A and a pin at D. The two members are connected by a pin at C. The dimensions are H = 1.4 m, H2 = 2.1 m, and L = 1.5 m The applied force P = 18 kN acts at the midpoint of BC, and the distributed load has intensity w = 1.4 kN/m Part C...

  • < Problem Assignment No. 8 Principle of Impulse and Momentum 6 of 20 Learning Goal Part...

    < Problem Assignment No. 8 Principle of Impulse and Momentum 6 of 20 Learning Goal Part A Time for the Car to Reach 100 km/h To apply the concepts of impulse and momentum to problems involving unknown forces, velocities, and times Find the time it will take for the car to reach v 100 km/h from rest. Express your answer to three significant figures in seconds A new rear-wheel drive automobile design is being tested and you have been asked...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT