Question

The following diagram illustrates a simple steam power plant. A 10kg/s flow of liquid water at T1=25°C enters the pump at a pressure of P1=100kPa and is then pumped to a pressure of P2=2MPa. The boiler then heats the water at constant pressure to produce superheated vapour at T3=450°C. The steam is then expanded in the turbine to a final pressure of P4=100kPa. The turbine and pump are well insulated and may be considered reversible.

a) Find the turbine exit state (quality or temperature, whichever is appropriate). (6 marks)

b) Determine the turbine power output. (4 marks)

c) Evaluate the power required to operate the pump. (3 marks)

d) Find the water temperature T2 at the exit of the pump. (4 marks)

e) Calculate the required heat input for the boiler. (3 marks)

f) If the flow velocity in the pipe at the turbine inlet is 50m/s, what is the pipe diameter? (2 marks)

g) Illustrate this cycle (identifying states 1 to 4) on a T-s diagram. (2 marks)

3 W Turbine Boiler 4 Pump 2 1 Wp

1)Identify the system / control volume
2)List the known variables
3)Assumptions
4)Relevant equations (Mass conservation, 1st Law, 2nd Law, etc)
5)Lookup required values in tables and/or do calculations

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Giveni The following diagram, 3 (3 twr T= 25c Turbin P, = 100 kPa Boiler b = 2mpa 4 11 pump T3 = 450 c pump o turbine are wel

Add a comment
Know the answer?
Add Answer to:
The following diagram illustrates a simple steam power plant. A 10kg/s flow of liquid water at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The following diagram illustrates a simple steam power plant. A 10kg/s flow of liquid water at...

    The following diagram illustrates a simple steam power plant. A 10kg/s flow of liquid water at T1=25°C enters the pump at a pressure of P1=100kPa and is then pumped to a pressure of P2=2MPa. The boiler then heats the water at constant pressure to produce superheated vapour at T3=450°C. The steam is then expanded in the turbine to a final pressure of P4=100kPa. The turbine and pump are well insulated and may be considered reversible. a) Find the turbine exit...

  • The figure shows a schematic of a power plant that has two steam turbines. The water...

    The figure shows a schematic of a power plant that has two steam turbines. The water (the working fluid for the plant) leaves the high pressure turbine (HPT) as saturated vapour at 1000 [kPa]. Part of this flow is diverted to an insulated heat exchanger, which we hot airstream to create superheated steam that enters the low pressure turbine (LPT). The air mas flow rate is 19.5 k/s and the air temperature drops from 1100 to 6001 as it goes...

  • The figure shows a schematic of a power plant that has two steam turbines. The water...

    The figure shows a schematic of a power plant that has two steam turbines. The water (the working fluid for the plant) leaves the high pressure turbine (HPT) as saturated vapour at 1000 [kPa]. Part of this flow is diverted to an insulated heat exchanger, which uses a hot air stream to create superheated steam that enters the low pressure turbine (LPT). The air mass flow rate is me=19.5 kg/s) and the air temperature drops from 1100 to 600°Cas it...

  • You are to analyze a simple steam power plant. At the boiler exit, the pressure is...

    You are to analyze a simple steam power plant. At the boiler exit, the pressure is 8 MPa and the temperature is 1000 °C. The turbine isentropic efficiency is 85%. The condenser pressure is 15 kPa and the water is a saturated liquid at the condenser exit. The pump isentropic efficiency is 80%. Answer the following: a) What is the quality at the exit in %, if the turbine is assumed isentropic? b) What is the work output of the...

  • Tor steam power prants 4 marks D) A steam power plant is to be designed using the Rankine cycle with superheat. The...

    Tor steam power prants 4 marks D) A steam power plant is to be designed using the Rankine cycle with superheat. The steam must enter; the turbine at pressure (P) and temperature (T), and the turbine steam exit pressure must be 0.05 bars. In order to produce 12 MW, a steam mass floW rate of 8.91 kg/s is to be used and the dryness fraction at turbine exit must be 0.9. Assuming the Rankine cycle to be ideal and neglecting...

  • (15 pts.) In an ideal Rankine cycle that uses water as the working fluid. Superheated steam...

    (15 pts.) In an ideal Rankine cycle that uses water as the working fluid. Superheated steam exits the boiler at 4 MPa and 600°C with a mass flow rate of 8 kg/s. The steam leaves the turbine at a pressure of 100 kPa. (a) Sketch the cycle on a T-s diagram (6) Determine the power output of the turbine (c) Determine the rate of heat loss from the condenser (d) The required pump power (e) The rate of heat addition...

  • Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...

    Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate: 1. The power output of the steam power plant 2. The thermal efficiency of the steam power plant Now,...

  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 550°C and the low-pressure turbine at 1 MPa and 550°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...

  • Problem 3 A supercritical steam power plant has a high pressure of 30.0MPa and an exit...

    Problem 3 A supercritical steam power plant has a high pressure of 30.0MPa and an exit condenser temperature of 50°C. The maximum temperature in the boiler is 1000°C. There is one open feedwater heater receiving extraction from the turbine at IMPa, and saturated liquid exits the feedwater heater. The isentropic efficiency of the turbine during both sections of expansion is 88.5%. The turbine produces 25MW of power. Assume both pumps are isentropic. Page 2 of 3 30MPa 1000 Turbine Boiler...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT