Question

Problem 2: pn Junction – Transient Response

The hole concentration on the n-side of an ideal pn step-junction Si diode at a given instant of time is as shown:

hw7.jpg

a) Is the junction forward or reverse biased? Explain briefly.

b) If pn0 = 103 and T = 300K, determine the applied bias, vA.

c) Is there a forward or reverse current flowing through the diode? Explain briefly.


0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Problem 2: pn Junction – Transient Response
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Problem 3: pn Junction -- Carrier Concentration Profiles The steady-state carrier concentrations inside a Si pn step ju...

    Problem 3: pn Junction -- Carrier Concentration Profiles The steady-state carrier concentrations inside a Si pn step junction diode maintained at room temperature are shown in the plot below: п or p (log scale Pp -106 10 102 a) Is the diode forward or reverse biased? Explain briefly. b) Do low-level injection conditions prevail in the quasi-neutral regions of the diode? Explain briefly. c) What are the p-side and n-side net dopant concentrations NA and ND, respectively? d) Determine the...

  • Problem 4: Narrow-Base Diode Consider an ideal pn* step-junction Si diode maintained at 300K with cross-sectional...

    Problem 4: Narrow-Base Diode Consider an ideal pn* step-junction Si diode maintained at 300K with cross-sectional area A = 104cm2. The doping concentration on the p-type side is Na= 1017 cm3 (uncompensated). (The n-type side is degenerately doped.) The electron recombination lifetime in the p-type region is tn = 10-6 s. The width of the quasi-neutral p-type region is 1 um, for VA=0 V. a Is this a narrow-base diode? Justify your answer. b) Calculate the diode saturation current Io....

  • Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration in...

    XXX is 467 Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration in the n-side N, = 5x1015 cm3 and the acceptor impurity concentration in the p-side N, = XXX × 1015/cm3 Assume that the diode area A-2x10-3 cm2 and 100cm work Note that the values obtained in the calculations may not be realistic as the Matric # varies greatly. The assignment is only to test your understanding, and must be handwritten Determine the...

  • Consider a silicon pn step junction diode with NA-1x1018 cm3 and No 1x1017cm-3, maintained at T...

    Consider a silicon pn step junction diode with NA-1x1018 cm3 and No 1x1017cm-3, maintained at T 300K. The minority carrier lifetimes in the p-side and n-side are τη-10-8 s and Tp-10-7 s, respectively. a) Calculate the minority carrier densities at the edges of the depletion region when the applied voltage (VA) is 0.6 V. of the junction, for the applied bias voltage of part (a) densities are equal in magnitude, for the applied voltage of part (a). b) Sketch the...

  • this is a problem of semiconductor device and fundamentals. Problem 4: pn Junction Current Distributions Consider a...

    this is a problem of semiconductor device and fundamentals. Problem 4: pn Junction Current Distributions Consider a Si pn step junction diode maintained at room temperature, with p-side and n-side dopant concentrations NA 1016 cm3 and Np-2x1016 cm3, respectively. (You may assume that each side is uncompensated.) The minority carrier recombination lifetimes are τ,-10-6 s and τ,-10-7 s on the p-side and n-side, respectively a) Calculate the minority carrier densities at the edges of the depletion region when the applied...

  • Q3 Consider a GaAs pn junction with doping concentrations Na5 x 106 cm-3 and N1016 cm-3....

    Q3 Consider a GaAs pn junction with doping concentrations Na5 x 106 cm-3 and N1016 cm-3. The junction cross-sectional area is A 103 cm2 and the applied forward-bias voltage is Va 1.10 V. Calculate the (a) minority electron diffusion cur rent at the edge of the space charge region, (b) minority hole diffusion current at the edge of the space charge region, and (c) total current in the pn junction diode.

  • 3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018 cm-3 on t...

    3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018 cm-3 on the p-side and donor concentration of Nj on the n-side. The diode is forward biased and has a voltage of 0.6 V across it. The diode cross-sectional area is 1 mm2. The minority carrier recombination time, T, depends on the total dopant concentration, Ndopant (cm), through the following approximate empirical relation (5x 10-7)/(1 + 2 10-17N1°pan.) where T is in seconds. (a)...

  • 3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018...

    3.13 Si pn junction Consider a long pn junction diode with an acceptor doping Naof 1018 cm-3 on the p-side and donor concentration of Nj on the n-side. The diode is forward biased and has a voltage of 0.6 V across it. The diode cross-sectional area is 1 mm2. The minority carrier recombination time, T, depends on the total dopant concentration, Ndopant (cm), through the following approximate empirical relation (5x 10-7)/(1 + 2 10-17N1°pan.) where T is in seconds. (a)...

  • 3. (40 pts) The capacitance of a silicon pn junction diode with an area 10° cm2 is measured. A pl...

    3. (40 pts) The capacitance of a silicon pn junction diode with an area 10° cm2 is measured. A plot of 1/C2 vs. the applied voltage Va is shown. The dashed line is extrapolated, continuing the data with a constant slope. From the junction capacitance formula and the dependence of W on Vbi-VA, one can obtain an equation for 1/C (a) If the diode is a one-sided junction, find the doping density on the low side from the measured (estimate...

  • The parameters of a pn junction diode at 300K are listed in the following table, the...

    The parameters of a pn junction diode at 300K are listed in the following table, the cross section area of the junction is 105 cm2 n region N10" cm Hu = 850 cm?/V-s p region t,e = 10-6 s ,1" 1250 cm2/V-s 11,-420 cm2/V-s 320 cm/V-s (a) Sketch a band diagram at equilibrium (b) Find the reserve saturation current (c) Find the ideal diode current with forward bias voltage at 0.5 V and 0.7 V, respectively. (d) Find the current...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT