Question

Electronic ECE

Screenshot (481).png



P and N type semiconductors are formed with an acceptor and donor concentration of 1×1017 cm-3 and 1×1016 cm-3 , respectively, intrinsic carrier concentration is 1×1010 cm-3 and relative permittivity (єs ) is 12є0 @ 300K. Given, permittivity of free space (є0 ) 8.85 × 10-12 Farad/meter, KT @ 300K 0.0259 eV, q = 1.602 × 10-19 coulombs

2. Majority and Minority Electron density (in cm-3 ) & Hole density (in cm-3 ) under equilibrium 

B. Draw the following profiles @ 300K 

3. Energy-band Vs Lateral distance (clearly indicate Ec , Ev , Eo , EF and Ei ) 

(i) under equilibrium (ii) under 0.5 V applied forward bias (iii) under -0.5 V applied reverse bias 

4. Electron density & Hole density (in Log scale) Vs Lateral distance under equilibrium (clearly indicate majority and minority concentration) 

5. Space Charge Density & Electric Field Vs Lateral distance under equilibrium (clearly indicate maximum electric) 

0 0
Add a comment Improve this question Transcribed image text
Answer #1

And I NA=1016 cm3 1015 um 3 NO ni = 1010 cm 3 Es = 1260 (1) Vai Viln (NAND) 0.026xIn 1031 1०२० 2x1260 W= q Vai 0.650 V = V 24Dear student as per HOMEWORKLIB POLICY we are allowed to do first question only. Hope this solution helps you. For any query please feel free to ask in comment box. Please don't forget to give thumbs up thank you

Add a comment
Know the answer?
Add Answer to:
Electronic ECE
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • ECE question

    P and N type semiconductors are formed with an acceptor and donor concentration of 1×1017 cm-3 and 1×1016 cm-3 , respectively, intrinsic carrier concentration is 1×1010 cm-3 and relative permittivity (єs ) is 12є0 @ 300K. Given, permittivity of free space (є0 ) 8.85 × 10-12 Farad/meter, KT @ 300K 0.0259 eV, q = 1.602 × 10-19 coulombs A. Calculate the following quantities @ 300K 1. Potential Drop (in V) and Maximum Electric Field (in V/cm) across PN-junction [2 +...

  • Biased Sip-n junction A Si p-n junction with area of 0.001 cm* is formed with an acceptor concent...

    Biased Sip-n junction A Si p-n junction with area of 0.001 cm* is formed with an acceptor concentration of Na 1x1015 cm3 on the p-side and a donor concentration of Na- 1x10" cmon the n-side. Calculate at 300 K (a) the diffusion voltage VD (b) the space charge width at equilibrium and with zero bias (c) the current with forward bias of 0.5 eV. Assume that the current is diffusion dominated. The electron and hole mobilities are ln-1500 cm2/(Vs) and...

  • A3. (a) Draw a band diagram and a cross-sectional diagram of an abrupt p-n junction0Marks] with N...

    a3. (a) Draw a band diagram and a cross-sectional diagram of an abrupt p-n junction0Marks] with N>N at thermal equilibrium at 300K and label the following: () Diffusion currents, (i) Drift currents (ii) Fermi level, (iv) SCR, (v) QNR, (vi) Contact potential with polarity, (vi) Electric field distribution in the SCR, (vii) Electrostatic potential distribution in SCR, (ix) SCR charges, and (x) SCR penetration into the p-and n sides. (b) In a p'-n junction at 300K, the n side has...

  • Please help me out.. Need to pass this course as a removal for my other course.....

    Please help me out.. Need to pass this course as a removal for my other course.. Si material parameters: Band gap energy at 300 K: Eg = 1.124 eV Relative permittivity: x = 11.7 Effective mass of electron: m =1.08m for density of states, Effective mass of hole: m = 0.81m for density of states, m = 0.26m for conductivity m =0.39m for conductivity Up = 470 cm/V.s Mobility: Un = 1400 cm /V-s, Diffusion coefficient: Do = 36 cm²/s,...

  • 3. A silicon npn bipolar transistor is uniformly doped and biased in the forward active region wi...

    3. A silicon npn bipolar transistor is uniformly doped and biased in the forward active region with the base-collector junction reverse biased by 2.5 V. The metallurgical base width is 1.5 μm. The emitter, base collector doping concentrations are 5 × 1017, 1016, 2 × 1015 cm-3 respectively. a. At T-300 K, calculate the base-emitter voltage at which the minority carrier electron concentration at x-0 is 20% of the majority carrier hole concentration. At this voltage calculate the minority carrier...

  • Taking pure silicon (Si) as an example, explain what is meant by the terms electron-hole generation...

    Taking pure silicon (Si) as an example, explain what is meant by the terms electron-hole generation and recombination, how they affect the electrical conductivity, and define what is meant by the "intrinsic carrier density", n. [5 marks] Q3. a) b) With the aid of both lattice and energy band diagrams, explain how n-type doping of Si is achieved and state two types of suitable dopant atoms. [7 marks] c) An n-type region on a Si wafer has a donor concentration...

  • Need help solving this questions. In problems 1-3, Assume n- 100 cm, E1 eV, 1000 cm-/V.s,...

    Need help solving this questions. In problems 1-3, Assume n- 100 cm, E1 eV, 1000 cm-/V.s, g.-12, s,-8.85% 10-14 Fern, and KT4-26-my 250 cma/V.s, Problem 1 A silicon sampl equilibrium has electron concentration given asn -e0'x+2305, where x is distance. Determine the (a) position of the Fermi level with respect to the conduction band, Ee, at x-1-um, (b) electron diffusion current density at x-1- m, and (c) sample conductivity at x-0 Problem 2 Consider a silicon PN-junction with acceptor and...

  • (0) If in GaAs, the Fermi level is 0.30 eV below the conduction band. [10] calculate the thermal equilibrium electron and hole concentration at room temperature. Bandgap of CaAs is 1.42 eV, the effective density of states of the conduction band at 300K i

    (0)If in GaAs, the Fermi level is 0.30 eV below the conduction band. [10] calculate the thermal equilibrium electron and hole concentration at room temperature. Bandgap of CaAs is 1.42 eV, the effective density of states of the conduction band at 300K is 4.7x10 cm and the effective density of states of the valence band is 7x10¹ cm³.L213(11)Identify and illustrate with required equations and diagrams, how energy and momentum are conserved in band to band transitions in indirect band gap...

  • Consider a silicon pn step junction diode with NA-1x1018 cm3 and No 1x1017cm-3, maintained at T...

    Consider a silicon pn step junction diode with NA-1x1018 cm3 and No 1x1017cm-3, maintained at T 300K. The minority carrier lifetimes in the p-side and n-side are τη-10-8 s and Tp-10-7 s, respectively. a) Calculate the minority carrier densities at the edges of the depletion region when the applied voltage (VA) is 0.6 V. of the junction, for the applied bias voltage of part (a) densities are equal in magnitude, for the applied voltage of part (a). b) Sketch the...

  • 2 photos The depletion layer width for different junctions is given by the following equations: w...

    2 photos The depletion layer width for different junctions is given by the following equations: w = het w = jane te pare VO w = (1280XL) Intrinsic carrier concentration of silicon, n., is 9.65 x 10 cm 1) The expressions for minority carrier diffusion length and diffusion coefficients and thermal velocity are as follows (for n-and p-type materials). L. - (Dpt) La = (Dat)* Và = To 1/NA in p-type material 1 - 1/(RexNA), where Re is the recombination...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT