Question

Consider an n-type semiconductor at 300 K. The electron concentration increases linearly from 5 x 1015/cm3 at x = 0 to 1016 /cm3 at x-50 μm. The electron mobility is 1000 cm2/V-s. The diffusion current density at x = 10 μm is Please choose one: a) O8.1 A/cm2 b) 12.2 A/cm2 c)2.2 A/cm2 d) 6.2 A/cm2 04.1 A/cm2

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Lra AT 10 자 50 5%1 스 +p 150す.to S- 510 39 1.S 5시 8 -1 eption@

Add a comment
Know the answer?
Add Answer to:
Consider an n-type semiconductor at 300 K. The electron concentration increases linearly from 5 x 1015/cm3...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • P5. The electron concentration in silicon at T 300°K is given by n (x) = 1016 exp (-x/18)/cm' where x is measur...

    P5. The electron concentration in silicon at T 300°K is given by n (x) = 1016 exp (-x/18)/cm' where x is measured in um and is limited to 0 SxS 25 um (also 18 has a unit of um). The electron diffusion coefficient is D.-25 cm2/sec and the electron mobility is -960 cm2/V-sec. The total electron current density through the semiconductor is constant and equal to J- 40 A/cm2. The electron current has both diffusion and drift current components. Determine...

  • An n-type silicon with No = 1 x 1015 cm'has hole and electron mobility values of...

    An n-type silicon with No = 1 x 1015 cm'has hole and electron mobility values of 500 cm/\-sec and 1500 cm²/.sec respectively. The semiconductor is maintained at 300 K. Excess hole concentration varies with distance (x) as p(x) = 1015 exp ( -.) cm3 Calculate hole diffusion current density at x = 0 and x=Lp if the lifetime of holes is 0.01 us.

  • 1252 407 3. At 300 K the electron mobility in n-type silicon in cm?N.s can be...

    1252 407 3. At 300 K the electron mobility in n-type silicon in cm?N.s can be approximated as un = 88+ - 0.88*n where N is 1+1.26 X 1017 the total ionized impurity concentration /cm? At 300 K the hole mobility in p-type silicon in cm N.s can be approximated as Hp = 54 + 5.88xN where N is the total ionized impurity concentration /cm3. Use these equations to generate plots of electron and hole mobility in silicon as a...

  • Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minor...

    Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minority carrier diffusion coefficients are D 25 cm/s, Da- 10 cm2/s n,1.5x1010 cm3 kT 0.0267 Depletion region p-type n-type a) (5 points) Calculate the excess electron concentration as a function of x in the p-side (see the figure above) b) (10 points) Calculate the...

  • 3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd ...

    3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd = 1 x 1015 cm-, and a cross-sectional area of A-|0-4 cm2. Let tao -0.4 s and tpo 0.1 us. Consider the geometry in Figure.Calculate (a) the ideal reverse saturation current due to holes, (b) the ideal reverse saturation current due to electrons, (c) the hole concentration at a, if V V and (d) the electron current at x = x" +...

  • Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3....

    Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3. The minority carrier lifetimes are τ -0.01 μs and τΡ 0.01 μ. The Junction is forwardbiased with , V,-0.6V. The minority carrier diffusion coefficients are D,-20 cm2/s, D,-10 cm2/s. n, = 1.5x 1010cm -3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Q1 (20%): The total electron concentration in a piece of lightly doped, n-type silicon at 500...

    Q1 (20%): The total electron concentration in a piece of lightly doped, n-type silicon at 500 varies linearly from 1X107 cm3 at x 0 to 6 x 10 cm at x 2 um. Electrons are supplied by an external circuit to keep this concentration constant with time. Calculate the electron current density in the silicon if no electric field is present at x 0. Assume H 1000 cm2/V-s. X-2um Q1 (20%): The total electron concentration in a piece of lightly...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • The resistivity in an n-type GaAs semiconductor at T = 300 K is ρ = 2...

    The resistivity in an n-type GaAs semiconductor at T = 300 K is ρ = 2 Ω-cm. Determine the thermal-equilibrium values of electron and hole concentration. Question 7 options: a) no = 3.67 X 1014 cm-3 po = 8.83 X 10-3 cm-3 b) po = 3.25 X 1015 cm-3 no = 6.92 X 104 cm-3 c) po = 6.92 X 1015 cm-3 no = 3.25 X 104 cm-3 d) no = 8.83 X 1014 cm-3 po = 3.67 X 10-3...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Can someone help solve this question step by step? Thanks! Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT