Question

P5. The electron concentration in silicon at T 300°K is given by n (x) = 1016 exp (-x/18)/cm where x is measured in um and i
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1 8 n 25 cm2/sec dz |because孚一 Lum ㄐ yo 18 18 6 18x966 .6x 960 Electuic」ield 4 6

Add a comment
Know the answer?
Add Answer to:
P5. The electron concentration in silicon at T 300°K is given by n (x) = 1016 exp (-x/18)/cm' where x is measur...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider an n-type semiconductor at 300 K. The electron concentration increases linearly from 5 x 1015/cm3...

    Consider an n-type semiconductor at 300 K. The electron concentration increases linearly from 5 x 1015/cm3 at x = 0 to 1016 /cm3 at x-50 μm. The electron mobility is 1000 cm2/V-s. The diffusion current density at x = 10 μm is Please choose one: a) O8.1 A/cm2 b) 12.2 A/cm2 c)2.2 A/cm2 d) 6.2 A/cm2 04.1 A/cm2

  • A silicon pn junction at T = 300 K has the following parameters: Na-5 1016 cm-?,...

    A silicon pn junction at T = 300 K has the following parameters: Na-5 1016 cm-?, N,-1 1016 cm-3, D.-25 cm3/s, D.-10 cm2/s, ?,0-5 x 10-7 s, and To 1 X 10-7 s. The cross-sectional area is A 10-3 cm2 and the forward- bias voltage is V,-0.625 V. Calculate the (a) minority electron diffusion cur- rent at the space charge edge, (b) minority hole diffusion current at the space charge edge, and (c) total current in the pn junction diode.

  • An n-type silicon with No = 1 x 1015 cm'has hole and electron mobility values of...

    An n-type silicon with No = 1 x 1015 cm'has hole and electron mobility values of 500 cm/\-sec and 1500 cm²/.sec respectively. The semiconductor is maintained at 300 K. Excess hole concentration varies with distance (x) as p(x) = 1015 exp ( -.) cm3 Calculate hole diffusion current density at x = 0 and x=Lp if the lifetime of holes is 0.01 us.

  • 1252 407 3. At 300 K the electron mobility in n-type silicon in cm?N.s can be...

    1252 407 3. At 300 K the electron mobility in n-type silicon in cm?N.s can be approximated as un = 88+ - 0.88*n where N is 1+1.26 X 1017 the total ionized impurity concentration /cm? At 300 K the hole mobility in p-type silicon in cm N.s can be approximated as Hp = 54 + 5.88xN where N is the total ionized impurity concentration /cm3. Use these equations to generate plots of electron and hole mobility in silicon as a...

  • Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minor...

    Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minority carrier diffusion coefficients are D 25 cm/s, Da- 10 cm2/s n,1.5x1010 cm3 kT 0.0267 Depletion region p-type n-type a) (5 points) Calculate the excess electron concentration as a function of x in the p-side (see the figure above) b) (10 points) Calculate the...

  • 1. Consider a p*n silicon diode at T-300 K with doping concentrations of N 10 cin...

    1. Consider a p*n silicon diode at T-300 K with doping concentrations of N 10 cin and N-101 cm-3. The minority carier hole diffusion coefficient is D 12 cm2/s and the minority carrier hole lifetime is po 10-7 s. The cross sectional area is A 10- cm2. Calculate the reverse saturation current and the diode current at a forward-bias voltage of 0.50v A germanium p* n diode at T-300 K has the following parameters: Na 108 cm-3 N,--1016 cm", ,...

  • 1. The electron charge carrier has the following concentration distribution ?(?) = 2? × 1016 1/cm^3,...

    1. The electron charge carrier has the following concentration distribution ?(?) = 2? × 1016 1/cm^3, where x has the unit of cm. Plot n(x) for x=[0, 10]cm. (10 points) 2. find ??(?) / ?? of problem 1, and plot ??(?) / ?? for x=[0, 10]cm (10 points) 3. Given that the diffusion coefficient of the electron in this material is D=25 cm^2/s, find the current density ?????(x) for x=[0, 10] (10 points)

  • 3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd ...

    3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd = 1 x 1015 cm-, and a cross-sectional area of A-|0-4 cm2. Let tao -0.4 s and tpo 0.1 us. Consider the geometry in Figure.Calculate (a) the ideal reverse saturation current due to holes, (b) the ideal reverse saturation current due to electrons, (c) the hole concentration at a, if V V and (d) the electron current at x = x" +...

  • Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3....

    Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3. The minority carrier lifetimes are τ -0.01 μs and τΡ 0.01 μ. The Junction is forwardbiased with , V,-0.6V. The minority carrier diffusion coefficients are D,-20 cm2/s, D,-10 cm2/s. n, = 1.5x 1010cm -3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Taking pure silicon (Si) as an example, explain what is meant by the terms electron-hole generation...

    Taking pure silicon (Si) as an example, explain what is meant by the terms electron-hole generation and recombination, how they affect the electrical conductivity, and define what is meant by the "intrinsic carrier density", n. [5 marks] Q3. a) b) With the aid of both lattice and energy band diagrams, explain how n-type doping of Si is achieved and state two types of suitable dopant atoms. [7 marks] c) An n-type region on a Si wafer has a donor concentration...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT