Question

Question 4 The power system shown is supplying a balanced wye-grounded resistive load that consumes the MW at 1.1 kV. An SLG

0 0
Add a comment Improve this question Transcribed image text
Answer #1

T 19 T AY +36 +js loMo gero sequence component T. T.L онол m 40 Mon II kv SOMUA 22/11kV X - 10.ospu Xo X = 7, 201p4 0.15 - olВ. Узу 1. 10 ко та ін. Те оч992 р 2o B%. 96A fact- Орч хЈь, 0.66 22 Ра Jait 1.Г (з 24. Го•1to ®В 10-266 ) 13 pm, & tipong -

Add a comment
Know the answer?
Add Answer to:
Question 4 The power system shown is supplying a balanced wye-grounded resistive load that consumes the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3.13 A single-line diagram of a three-phase power system is shown in Fig. 3.51. The ratings...

    3.13 A single-line diagram of a three-phase power system is shown in Fig. 3.51. The ratings of the equipment are shown below Generator G: 100 MVA, 11 kV, Xi -X2-0.20 pu, Xo -0.05 pu Generator G2 : 100 MVA, 20 kV, Xi=X2=0.25 pu, Xo=0.03 pu, X,,-0.05 pu Transformer T: 100 MVA, 11/66 kV, Xi -X2-Xo 0.06 pu Transformer T2: 100 MVA, 11/66 kV, Xi-X2 = Xo 0.06 pu Line: 100 MVA, X,-X2 = 0.15 pu, Xo = 0.65 pu A...

  • A single line diagram of a power system is shown in Fig. 2. The system data with equipment ratings and assumed sequence reactances are given the following table. The neutrals of the generator and A-Y...

    A single line diagram of a power system is shown in Fig. 2. The system data with equipment ratings and assumed sequence reactances are given the following table. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance Xn 0.05 per unit on the motor base. Assume that Pre-fault voltage is takin as VF-1.0 ,0° per unit and Pre- fault load current and Δ-Y transformer phase shift are neglected In the...

  • The component parameters for the power system shown in Figure 2 are given in Table 1. The pre-fau...

    The component parameters for the power system shown in Figure 2 are given in Table 1. The pre-fault voltage is 120° pu and Zx-j0.1 pu. Table 1 Ratings X2-Xi (pu)Xo (pu) 0.05 0.10 0.20 0.20 Components G1, G2 200 MVA, 20 kV 0.10 0.10 0.10 0.10 T1, T2, T3200 MVA, 20/200 kV L1 200 MVA, 200 kV し2 200 MVA, 20 kV (a) Draw the three sequence networks and determine the per-unit Thevenin impedance of each sequence network seen from...

  • 2. A single-line diagram of the power system considered is shown in Figure P2a, where negative-...

    2. A single-line diagram of the power system considered is shown in Figure P2a, where negative- and zero-sequence reactances are also given. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance Xn = 0.05 per unit on the motor base. The per-unit zero-, positive and negative-sequence networks on a 100-MVA is shown in Figure P26, 13.8-kV base in the zone of the generator. a. Reduce the sequence networks to their...

  • QUESTION 4. A single-line diagram of a power system is shown in Figure Q3 below, where...

    QUESTION 4. A single-line diagram of a power system is shown in Figure Q3 below, where negative and zero-sequence reactances are also given. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance X.=0.05 per unit on the motor base. Prefault voltage is VF1.05<Oº per unit whereas prefault load current is zero. Take A-Y transformer phase shifts into consideration. M Line tool X, - X2 - 200 100 MVA X =...

  • 1) Consider the power system shown in Fig. 1. Use a power base of 500 MVA...

    1) Consider the power system shown in Fig. 1. Use a power base of 500 MVA to calculate the fault current in amperes for a double line-to-ground fault at bus B. G: 500 MVA, 13.8 kv, xa = 0.2 p.M., X2 = 0.2 p.j. and x = 0.1 p.u. G2:600 MVA, 26 kv, xa = 0.15 p.u., X2 = 0.15 p.u. and X, = 0.1 p.u. G3:400 MVA, 13.8 kv, x, = 0.2 p.u., x2 = 0.2 p.u. and x...

  • Consider a 2-generator power system feeding a load through transmission network as shown in Figure below....

    Consider a 2-generator power system feeding a load through transmission network as shown in Figure below. The impedance data of the network is given in pu values on 100 MVA base. Using NR method find the bus voltages after two i terations. The scheduled power and nominal bus pu bus voltages are indicated in Figure below. Consider a 2-generator power system feeding a load through transmission network as shown in Figure 2. The impedance data of the network is given...

  • The one-line diagram of a simple power system is shown in Figure 1. The neutral of...

    The one-line diagram of a simple power system is shown in Figure 1. The neutral of each generator is grounded through a current-limiting reactor of 0.25/3 per unit on a 100-MVA base. The system data expressed in per unit on a common 100-MVA base is tabulated below. The generators are running on no-load at their rated voltage and rated frequency with their emfs in phase. Determine the fault current for the following faults giving Zo = 0.35, Z = 0.22...

  • 6 Determine the power factor at location at which the generator must operate in the radial transmission system shown be...

    6 Determine the power factor at location at which the generator must operate in the radial transmission system shown below. Use 100 MVA as the base power and assume the voltages at A to be 1 p.u E 275 kV D C 132 kV B A F 100 km 50 km 0.1 Ohns/km 0.12 Ohms/km 100 MVA 100 MVA 11.8 KV 11/275 kV 60 MVA 60 MVA 132/1 kV X 12% X 7% ха X = 0.16 275/132 kV X...

  • Figure 1 Single line diagram b2 b3 b1 b4 grid Τι 13 A power system single line diagram is shown...

    Figure 1 Single line diagram b2 b3 b1 b4 grid Τι 13 A power system single line diagram is shown in Figure 1. The single line diagram shows a synchronous generator G connected to a large 50 Hz grid via its unit transformer T and a network of three transmission lines. Relevant details of the grid, transformer, generator and overhead lines are provided in Tables I,II,II & IV respectively. A double line to ground fault occurs at bus 3 Questions....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT