Question

Q1. For the system shown in Figure1, the initial conditions are (-0)-0, 0) 2rad/s (i) Find its total kinetic energy and total
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Geu that, hn2 m ILCt totul it C K.E) 2.hm the prn2 2 from eluain)Tc 0.1255 sec ד,me tallen by tiu Slgstem to complete ontuu Prom enuatim 0 dF ,= ACOR [5b ou!] t t Bsm(りb.tndt

Add a comment
Know the answer?
Add Answer to:
Q1. For the system shown in Figure1, the initial conditions are (-0)-0, 0) 2rad/s (i) Find its to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 1 Figure Q1 shows a mechanical system. The system input is T) and output is supposed to ...

    Please write down the steps by steps solution, thank you! Question 1 Figure Q1 shows a mechanical system. The system input is T) and output is supposed to be 0. Please find the transfer function from T to θ 3, and discuss the stability of the system if the input is a unit impulse signal. (30 marks) To 01(t) 01t) I kg-m2 N 10 030) N2 100 100 kg-m2 100 N-m/rad 100 N-m-s/rad Figure Q1 Question 1 Figure Q1 shows...

  • For the system shown in Fig. 1, solve the following problems. (a) Find the transfer function, G(s...

    For the system shown in Fig. 1, solve the following problems. (a) Find the transfer function, G(s)X2 (s)/F(s) (b) Does the system oscillate with a unit step input (f (t))? Explain the reason (c) Decide if the system(x2 (t)) is stable with a unit step input (f (t))? Explain the reason 1. 320) 8 kg 2 N/m 4N-s/m 2N-s/m Fig. 1 2. There are two suspensions for a car as shown in Fig. 2 (a) Find the equations of each...

  • 2.5 m/s2.5 m/s Initial Velocity Initial Velocity 0 1 m/s 0 3 m/s Mass: 1 kg...

    2.5 m/s2.5 m/s Initial Velocity Initial Velocity 0 1 m/s 0 3 m/s Mass: 1 kg Mass: 3 kg Inelastic Case 2: Blue Cart Moving Slower than the Red Cart Set the initial blue cart velocity to less than the red cart velocity. Position the blue cart in the middle of the track. Use different mass values. Run the simulation and record the mass and velocity values. Before Collision After Collision m/s m/s m/s mRed kg m Blue kg Table...

  • 03. For the system in Figure 3 where and are the rotational angles, /, and 2 are the rotary inertias of the two disks w...

    03. For the system in Figure 3 where and are the rotational angles, /, and 2 are the rotary inertias of the two disks with radius r and 2r, respectively, (1) Find its total kinetic energy, total potential energy and e, 2r Lagrangian in terms of θ' and θ, (2) Derive the equations of motion using Lagrangian equation method (3) Put the equations of motion in matrix form, and Im In 4) Calculate the natural frequencies and the associated mode...

  • please show steps For the system shown in the figure. a. Find the transfer function 0,(s)/T(S)....

    please show steps For the system shown in the figure. a. Find the transfer function 0,(s)/T(S). b. Find the damping Dyo yield a 20% gvershoot in output angular displacement for a step torque input. N =25 kg-r W3 10 N2=5 D N-m/rad N4 5 0000 For the system shown in the figure. a. Find the transfer function 0,(s)/T(S). b. Find the damping Dyo yield a 20% gvershoot in output angular displacement for a step torque input. N =25 kg-r W3...

  • A figure skater can increase her spin rotation rate from an initial rate of 1.0 rev...

    A figure skater can increase her spin rotation rate from an initial rate of 1.0 rev every 1.2 s to a final rate of 2.0 rev/s . PART A If her initial moment of inertia was 4.9 kg⋅m2 , what is her final moment of inertia? Express your answer using two significant figures. PART B How does she physically accomplish this change? Q2 A person of mass 75 kg stands at the center of a rotating merry-go-round platform of radius...

  • I don't understand how to find 6b and all of 7. 6. A hollow sphere with...

    I don't understand how to find 6b and all of 7. 6. A hollow sphere with mass = 0.65 kg and radius = 0.13 m is initially at rest on a 20° incline and rolls down the incline without slipping. The initial height of the disk (H) a. At the top of the incline, just before the disk begins to roll, what is the total mechanical energy of the disk? Emech=PEtop=6.37) b. Determine the velocity of the disk at H=...

  • Q3. For the system in Figure 3 where 0 and angles, and are the rotary inertias of the two disks with are the rotati...

    Q3. For the system in Figure 3 where 0 and angles, and are the rotary inertias of the two disks with are the rotational radius r and 2r, respectively, 2r (1) Find its total kinetic energy, total potential energy and Lagrangian in terms of 0, and 0 (2) Derive the equations of motion using Lagrangian equation method (3) Put the equations of motion in matrix form, and (4) Calculate the natural frequencies and the associated mode Fosin shapes if m...

  • s) Given the following rotational mechanical system, hot relates the input variable T (applied torque) to...

    s) Given the following rotational mechanical system, hot relates the input variable T (applied torque) to the output a) Write the differential equation that re variable angular displacement) b) Convert the differential equatio c) Write the Transfer function of the system (I. w ent the differential equation to Laplace domain assuming initial conditions Zero Consider the following values for the parameters: J - 2 kg-m? (moment of inertial of the mass) D = 0.5 N-m-s/rad (coefficient of friction) K-1 N-m/rad...

  • The four particles shown in Fig. conriected by rigid rods. The origin is at the center...

    The four particles shown in Fig. conriected by rigid rods. The origin is at the center of the rectangle. If the system rot ates in the xy plane about the z axis with an angular spe ed of 5.00 rad/s, calculate Fim) 3.00 kg 2.00 kg 4:-The mornent of inertia of the system about the z axis (A)143 Kg ni2 (B) 65Kg.m2 (C) 78Kg.m2 (D) 52 Kg.m2 (E) 91Kg.m2 6.00 ni im) 4.00mH Q5:- The rotational kinetic energy of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT