Question

4. Design a Schottky Contact with P-type Gallium Arsenide a. b. c. Identify a metal that forms a Schottky Contact at OV bias

ypes ot Metal-Semiconddcto Contacts Metal Metal P-type implies holes are the majority Valence band determines MS junction beh

4. Design a Schottky Contact with P-type Gallium Arsenide a. b. c. Identify a metal that forms a Schottky Contact at OV bias Sketch the Band-bending diagram a 0V bias Sketch the Band-bending diagram for Forward Bias and Reverse Bias, label the polarity of bias
ypes ot Metal-Semiconddcto Contacts Metal Metal P-type implies holes are the majority Valence band determines MS junction behavior . N-type implies electrons are the majority Conduction band determines MS junction behavior . . N-type SchottkyP-type Schottky N-type Ohmic P-type Ohmic ep ep, Work Punctbon E, Metal
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Fop ype ^allium snid,Silver 2inc alloy is used vbi ov bias Ejm metal Semiconducto c) Slecton-hole ecanbinatiorn ard bias VS C

Add a comment
Know the answer?
Add Answer to:
4. Design a Schottky Contact with P-type Gallium Arsenide a. b. c. Identify a metal that forms a ...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Design a Schottky Contact with N-type Silicon a. b. c. Identify a metal that farms a Schottky ...

    2. Design a Schottky Contact with N-type Silicon a. b. c. Identify a metal that farms a Schottky Contact at 0V bias Sketch the Band-bending diagram a 0V bias Sketch the Band-bending diagram for Forward Bias and Reverse Bias, label the polarity of bias. ypes ot Metal-Semiconductor Contacts Metal Metal N-type implies electrons are the majority Conduction band determines MS junction behavior type implies holes are the majority Valence band determines MS junction behavior . . N-type Schottky P-type Schottky...

  • 5. For the following Metal-Semiconductor Contacts, calculate the built-in bias and depletion widt...

    5. For the following Metal-Semiconductor Contacts, calculate the built-in bias and depletion width, and identify the type of contact. Assume 0V bias a. Pt-Silicon (Na b. Ti-Silicon (Nd c. Cu- Silicon (Nd 1e13, Nd 1e3) le 16, Na 1e2) 1e20, Na- 1e3) 6. Sketch a Cross-Section of the following junctions, label the charge of the depletion region and polarity of forward bias. Choose the proper semiconductor and metal for each junction. N-type Tunnel MS Junction P-type Tunnel MS Junction PN...

  • 1. Draw the band diagram of Schottky and Ohmic contact at metal/n-type silicon. Explain why ohmic...

    1. Draw the band diagram of Schottky and Ohmic contact at metal/n-type silicon. Explain why ohmic contact cannot be formed using common metals

  • A metal, with a work function Ф,,-41 V, is deposited on an n-type silicon semiconductor with elec...

    A metal, with a work function Ф,,-41 V, is deposited on an n-type silicon semiconductor with electron affinity 4.0V and energy bandgap 1.12eV. Assuming no interface states exist at the junction and operation temperature at 300K. Effective density of states in conduction band (N 3.22 x 10 cm3. Effective density of states in valence band (N) 1.83 x 10" cm 193 A) Sketch the energy band diagram for zero bias for the case when no space charge region exists at...

  • Problem 7: MS contact n-type Si Consider a contact between NiSi and n-type silicon with N 10 cm m...

    All needed data is given. Please solve clearly. Problem 7: MS contact n-type Si Consider a contact between NiSi and n-type silicon with N 10 cm maintained at T 300K. (a) Draw the equilibrium 0 V) energy-band diagram, indicating numerical values for the Schottky barrier height Фв , depletion-layer width W, Ec-Ep in the neutral region, and built-in potential li (Note: Use the Schottky barrier value given in Lecture #7) (b) Draw the energy-band diagram for an applied bias V-0.5...

  • An ideal metal-semiconductor (M-S) junction is formed on the n-type Si semiconductor that is uniformly doped...

    An ideal metal-semiconductor (M-S) junction is formed on the n-type Si semiconductor that is uniformly doped with a donor impurity (phosphorus) concentration of 1016 cm. The metal work function is 4.5 eV, and the Si electron affinity is 4 eV. Assuming that this M-S junction is at 300K, give your best answers to the following questions. (50 points) (a) At thermal equilibrium, draw the energy band diagram including meaningful parameters (energy barriers, energy levels, depletion width, etc.). (b) Calculate the...

  • 4. A metal and p-type Si (Ds > Фт) are brought together to form Junction. (a) Draw energy band st...

    4. A metal and p-type Si (Ds > Фт) are brought together to form Junction. (a) Draw energy band structure for metal and p-type semiconductor? (b) Will the junction be ohmic or Schottky? Why? (c) If the doping in the Si layer is p-1017cm-3. Фт=3eV,猛2.5eV, Ea (Si)|JeV, д-15x100 cm-3, calculate Vin and energy barrier height Фь.? 4. A metal and p-type Si (Ds > Фт) are brought together to form Junction. (a) Draw energy band structure for metal and p-type...

  • 9. An n- type germanium semiconductor sample is brought into contact with a p - type...

    9. An n- type germanium semiconductor sample is brought into contact with a p - type silicon sample. The germanium sample has a carrier concentra- tion of 4.5 x 1016cm-3 and the silicon sample has a carrier concentration of 1.0 × 1016cm-3. At 300K the intrinsic carrier concentration of germanium is 2.4 × 1013cm-3 and its band gap is 0.66 eV. At 300K the intrinsic carrier concentration of silicon is 1.45 × 1010cm-3 and its band gap is 1.12 eV....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT