Question

Wdep P-Type N -Type Q1. Consider the PN junction at equilibrium shown in the figure above. Both N-side and P-side has same doping density NA ND 1017 /cm3. Assume both electron and hole mobility to be same, i.e Me - 1000cm2/Vs. a equilibrium energy band diagram. Find (EF Et at(i)x-0. (ii) x »xn (iii) X <K_Xp Find the value of built-in voltage and total depletion width (5+5 points) Find electron and hole densities at (i) x = 0. (ii) x 》 xn (111) X -Xp points) (4+2+2+2 points) b) c) (4+3+3 d) Find the value of resistivity at (1) x 0, (2) x 》 xn (3) x -Xp (6+2+2 points) e Which resistivity among (1). (2) and (3) will change the most under forward bias VA>0) and why? Estimate resistivity at x-0 for V0.5V (5+5 points)

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Wdep P-Type N -Type Q1. Consider the PN junction at equilibrium shown in the figure above....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A Si step junction maintained at room temperature under equilibrium conditions has a p-side doping of...

    A Si step junction maintained at room temperature under equilibrium conditions has a p-side doping of Na = 2x1015/cm3 , and an n-side doping of Nd = 1015/cm3 . Compute (a) Built-in potential Vbi (b) Depletion region width W, and xp, xn (c) Maximum electric field at x=0 (d) Electrostatic potential V at x=0 (e) Make sketches of the charge density, electric field, and electrostatic potential as a function of position x

  • For a Si p-n junction with p-type doping of 1 x 10^16/cm3 and n-type doping of...

    For a Si p-n junction with p-type doping of 1 x 10^16/cm3 and n-type doping of 1 x 10^19/cm3, calculate the built-in potential Vb at 300K, dark, thermal equilibrium condition. Please show the equations and parameters used in the calculation and the value of Ec-Ef, Ef-Ev, and Vb. Please draw a band structure similar to the one in lecture 5 slide 6 based on your results, please also label Ec, Ev, Vb, and Ef in the drawing.

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • A p-n junction is created by doping the right side of a piece of silicon with...

    A p-n junction is created by doping the right side of a piece of silicon with 1014 atoms/cm3 of phosphorus and the left side with 1018 atoms/cm3 of boron. Assume that the dopants are fully ionized, and assume the junction is at x = 0 with x+ pointed to the right. a) Plot by hand (roughly to scale) an energy band diagram of the junction and label EGAP, EC, EV, EF and EFi. Using the effective density of states, calculate...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Can someone help solve this question step by step? Thanks! Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p...

  • Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minor...

    Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minority carrier diffusion coefficients are D 25 cm/s, Da- 10 cm2/s n,1.5x1010 cm3 kT 0.0267 Depletion region p-type n-type a) (5 points) Calculate the excess electron concentration as a function of x in the p-side (see the figure above) b) (10 points) Calculate the...

  • Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3....

    Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3. The minority carrier lifetimes are τ -0.01 μs and τΡ 0.01 μ. The Junction is forwardbiased with , V,-0.6V. The minority carrier diffusion coefficients are D,-20 cm2/s, D,-10 cm2/s. n, = 1.5x 1010cm -3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • A silicon p-n junction is made by doping the p and n sides with doping density...

    A silicon p-n junction is made by doping the p and n sides with doping density of Na=3E15 cm and Nd=2E18 cm". At T=300 K in equilibrium find: e) Draw the energy diagram inclusive of Xn, Xp, energy and fermi levels

  • N P n=10 p=109 1013 4.32P) The figure shows carrier densities of a Si PN junction...

    N P n=10 p=109 1013 4.32P) The figure shows carrier densities of a Si PN junction diode. Before solution choose suitable positive integer values of a and b (a>b) and show this numbers clearly in a box. a) Write the bias type and explain your reason. Calculate the bias voltage. (n=101) b) What are the equilibrium values of minority carriers? c) Calculate the hole concentration on the N side at x=0. d) Diffusion constants of electron and holes has Dn=cDp...

  • 1. Consider a p-n junction diode with doping concentrations: NA6.5x1015 cm3 and ND 107 cm3 in...

    1. Consider a p-n junction diode with doping concentrations: NA6.5x1015 cm3 and ND 107 cm3 in the p- and n-sides, respectively. (a) Calculate the free electron and hole concentrations in both p- and n-sides' neutral regions. (b) Find the barrier height and the built-in voltage. (c) Sketch the energy band diagram of the complete p-n junction. Mark all energy levels including the barrier height and show the energy level values. (d) Calculate the total depletion width under zero bias. (e)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT