Question

4. Construct a semilogarithmic plot such as Fig. 4-7 for Si doped with 5x101s donors/cm2 and having 3x101 electron-hole-pairs
0 0
Add a comment Improve this question Transcribed image text
Answer #1

아よ 3x10,yeNo.2 tl lo 0 PCt) 1o1 13 S0 too 1 50

Add a comment
Know the answer?
Add Answer to:
4. Construct a semilogarithmic plot such as Fig. 4-7 for Si doped with 5x101s donors/cm2 and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Si sample doped with donors 101°cm-3 initially at room temperature 300 °K (n 31010 cm. Later it i...

    Si sample doped with donors 101°cm-3 initially at room temperature 300 °K (n 31010 cm. Later it is excited optically as such 1019 cm-3electron-hole pairs are produced in one second uniformly in the sample. Si band gap energy isEg-1.11 eV and the recombination for hole electron life-time10 μs. Hint may use results of question 1 above. Draw appropriate figures and mark related levels! a) Calculate the equilibrium Fermi level with respect to conduction band edge Ec b) Calculate the equilibrium...

  • Determine the equilibrium electron and hole concentration inside a uniformly doped sample of Si under the...

    Determine the equilibrium electron and hole concentration inside a uniformly doped sample of Si under the following conditions: 4. (a) T 300 K, NA ND, N 1016/cm3 (b) T = 450 K, N,-0, ND-1014/cm 3 (You can use the necessary data from Fig. 2.20 for your calculation.)

  • 3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd ...

    3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd = 1 x 1015 cm-, and a cross-sectional area of A-|0-4 cm2. Let tao -0.4 s and tpo 0.1 us. Consider the geometry in Figure.Calculate (a) the ideal reverse saturation current due to holes, (b) the ideal reverse saturation current due to electrons, (c) the hole concentration at a, if V V and (d) the electron current at x = x" +...

  • Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3....

    Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3. The minority carrier lifetimes are τ -0.01 μs and τΡ 0.01 μ. The Junction is forwardbiased with , V,-0.6V. The minority carrier diffusion coefficients are D,-20 cm2/s, D,-10 cm2/s. n, = 1.5x 1010cm -3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Please help me out.. Need to pass this course as a removal for my other course.....

    Please help me out.. Need to pass this course as a removal for my other course.. Si material parameters: Band gap energy at 300 K: Eg = 1.124 eV Relative permittivity: x = 11.7 Effective mass of electron: m =1.08m for density of states, Effective mass of hole: m = 0.81m for density of states, m = 0.26m for conductivity m =0.39m for conductivity Up = 470 cm/V.s Mobility: Un = 1400 cm /V-s, Diffusion coefficient: Do = 36 cm²/s,...

  • question 4-7 4. Travelling Waves and Their Characteristics A rope wave travels in the positive x -direction. You are also told that the speed of the wave is 1000 cm/s, its frequency is 200 H...

    question 4-7 4. Travelling Waves and Their Characteristics A rope wave travels in the positive x -direction. You are also told that the speed of the wave is 1000 cm/s, its frequency is 200 Hz, and that the wave is subject to the following initial conditions: at x 0 and t = 0: y =-1 cm, and, at x = 0 and t : ar = +20 cm/s (this is the velocity of the point on the rope at horizontal...

  • Problem 4: Read Appendix 2 below (Sec. 1.4.1 of Kasap) and then solve. A metallic back...

    Problem 4: Read Appendix 2 below (Sec. 1.4.1 of Kasap) and then solve. A metallic back contact is applied to the CdTe solar cell of Problem 1 using a set up similar to that described in Figure 1.74 (b) on the next page. To form the metallic back contact, two evaporation sources are used, Cu and Au. An initial 3 nm layer of Cu is deposited first and then 30 nm of Au is deposited. After these depositions, the sample...

  • It's a weak acid strong base titration Experiment 4: Identification of an unknown acid by titration...

    It's a weak acid strong base titration Experiment 4: Identification of an unknown acid by titration Page 2 of 15 Background In this experiment, you will use both qualitative and quantitative properties to determine an unknown acid's identity and concentration. To do this analysis, you will perform a titration of your unknown acid sample-specifically a potentiometric titration where you use a pH meter and record pH values during the titration, combined with a visual titration using a color indi- cator...

  • (I did this homework in completion but professor was not happy with answers whatsoever, need additional...

    (I did this homework in completion but professor was not happy with answers whatsoever, need additional answers and especially improvement to 1.b help!! photos not attaching? mean by severai steps. inis is a View Feedback homework and will need you to work, in one two View Feedback or various steps. Unfortunately, I cannot read your screen shot of what you did on excel. As I have said in numerous messages announcements etc, I cannot аcсept pictures. You need to write...

  • summatize the following info and break them into differeng key points. write them in yojr own...

    summatize the following info and break them into differeng key points. write them in yojr own words   apartus 6.1 Introduction—The design of a successful hot box appa- ratus is influenced by many factors. Before beginning the design of an apparatus meeting this standard, the designer shall review the discussion on the limitations and accuracy, Section 13, discussions of the energy flows in a hot box, Annex A2, the metering box wall loss flow, Annex A3, and flanking loss, Annex...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT