Problem

For the decomposition of (CH3)2O (species A) at 777 K, the time required for [A]0 to fall...

For the decomposition of (CH3)2O (species A) at 777 K, the time required for [A]0 to fall to 0.69[A]0 as a function of [A]0 is:

103[A]0/(mol/dm3)

8.13

6.44

3.10

1.88

t0.69/s

590

665

900

1140

(a) Find the order of the reaction. (b) Find kA in d[A]/dt =

kA[A]n.

Step-by-Step Solution

Solution 1

For any reaction,

$$ a \mathrm{~A}+b \mathrm{~B}+\ldots \rightarrow e \mathrm{E}+f \mathrm{~F}+\ldots $$

Rate constant is defined by the following formula,

$$ k=\frac{r}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b} \ldots[\mathrm{E}]^{c}[\mathrm{~F}]^{\gamma} \ldots} $$

Here, \(k\) is the rate constant, \(r\) as rate of reaction and \([\mathrm{A}]^{a},[\mathrm{~B}]^{b},[\mathrm{E}]^{e}\) and \([\mathrm{F}]^{\prime}\) are the concentration of reactants affecting the rate of reaction. All rate constants cannot have the same dimensions. They vary according to the order of reaction.

(a)

The reaction involved is as follows:

\(a \mathrm{~A} \rightarrow\) products

The rate law for the above reaction is:

$$ r=k[\mathrm{~A}]^{n} $$

The rate law for \(n \neq 1\) is given as follows:

$$ \begin{aligned} r &=k[\mathrm{~A}]^{n} \\ &=-\frac{1}{a} \frac{d[\mathrm{~A}]}{d t}=k[\mathrm{~A}]^{n} \end{aligned} $$

Or,

$$ \begin{aligned} \frac{d[\mathrm{~A}]}{[\mathrm{A}]^{n}} &=-a k d t \\ &=-k_{\mathrm{A}} d t \end{aligned} $$

Here, \(a k=k_{\mathrm{A}}\).

Separate the variables and integrate the above expression as follows:

$$ \int_{\left[A_{L}\right.}^{|A|}[A]^{-n} d[A]=-k_{A} \int_{0}^{t} d t \ldots \ldots .(1) $$

Set the integration limits of concentration from \([\mathrm{A}]_{0}\) to \([\mathrm{A}]\) and of time from 0 to \(t\). Here, \([\mathrm{A}]_{0}\) is \([\mathrm{A}]\) at \(t=0\)

Solve equation (1) as follows:

$$ \frac{[\mathrm{A}]^{-n+1}-[\mathrm{A}]_{0}^{n+1}}{-n+1}=-k_{\mathrm{A}} t $$

Multiply by \((1-n)[\mathrm{A}]_{0}^{n-1}\) on both the sides gives:

$$ \left(\frac{[\mathrm{A}]}{[\mathrm{A}]_{0}}\right)^{1-n}=1+[\mathrm{A}]_{0}^{n-1}(n-1) k_{\mathrm{A}} t \ldots \ldots(2) $$

Substitute \([\mathrm{A}]\) as \(0.69[\mathrm{~A}]_{0}\) and \(t\) as \(t_{a}\) (fractional life) as follows:

$$ [\mathrm{A}]_{0}^{w-1}(n-1) k_{\Lambda} t_{a}=\left(\frac{0.69[\mathrm{~A}]_{0}}{[\mathrm{~A}]_{0}}\right)^{1-n}-1 $$

Solve for \(t_{a}\) as follows:

$$ t_{a}=\frac{(0.69)^{1-n}-1}{[\mathrm{~A}]_{0}^{n-1}(n-1) k_{\mathrm{A}}} \ldots \ldots(3) $$

Take \(\log\) on both sides of equation (3) as follows:

$$ \log _{\models 0} t_{\alpha}=\log _{10} \frac{(0.69)^{1-n}-1}{(n-1) k_{\mathrm{A}}}-(n-1) \log _{10}[\mathrm{~A}]_{0} $$

The data is given as follows:

[A]o(mol/L)

log{[A]o/(mol/L)}

tα(s)

log (tα/s)

0.00813

-2.089909454

590

2.770852

0.00644

-2.191114133

665

2.822822

0.0031

-2.508638306

900

2.954243

0.00188

-2.725842151

1140

3.056905

Plot the graph of and gives a straight line where slope is .

Picture 2

Compare the equation obtained from the graph with that of the straight line \(y=m x+c\).

It gives the slope \((m)\) as:

$$ m=1-n \ldots \ldots(4) $$

From the graph the value of \(m\) is \(-0.4426\).

Substitute \(m\) as \(-0.4426\) in equation (4) as follows:

$$ -0.4426=1-n $$

Solve for \(n\) as follows:

$$ \begin{aligned} n &=1.4426 \\ & \approx 1.5 \end{aligned} $$

Therefore, the order of the reaction is 3/2.

(b)

The decomposition of \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}\) requires time for \([\mathrm{A}]_{0}\) to fall to \(0.69[\mathrm{~A}]_{0}\).

The dimensionless parameter is given as:

$$ \alpha \equiv \frac{[\mathrm{A}]}{[\mathrm{A}]_{0}} $$

Here, \(\alpha\) denotes fraction of \(\mathrm{A}\) that is unreacted and \([\mathrm{A}]_{0}\) is \([\mathrm{A}]\) at \(t=0 . t_{a}\) is the fractional life.

Solve the value of \(\alpha\) as follows:

$$ \begin{aligned} \alpha &=\frac{0.69[\mathrm{~A}]_{0}}{[\mathrm{~A}]_{0}} \\ &=0.69 \end{aligned} $$

Substitute \(\alpha\) as \(0.69\) and \(n\) as \(1.5\) in equation (2) as follows:

$$ \begin{aligned} &(0.69)^{1-1.5}=1+[\mathrm{A}]_{0}^{1, S-1}(1.5-1) k_{\wedge} t_{\alpha} \\ &(0.69)^{-0.5}=1+[\mathrm{A}]_{0}^{\frac{1}{2}}(0.5) k_{\mathrm{A}} t_{\alpha} \\ &\frac{1.2038-1}{0.5}=[\mathrm{A}]_{0}^{\frac{1}{2}} k_{\wedge} t_{a} \end{aligned} $$

Solve for \(k_{\mathrm{A}}\) :

$$ \frac{0.408}{[\mathrm{~A}]_{0}^{\frac{1}{2}} t_{\alpha}}=k_{\mathrm{A}} \ldots \ldots(5) $$

Substitute for four pairs of the data given to calculate \(k_{\text {A }}\) for each pair as follows:

For pair 1-

Substitute \(t_{a}\) as \(590 \mathrm{~s}\) and \([\mathrm{A}]_{0}\) as \(0.00813 \mathrm{~mol} / \mathrm{dm}^{3}\) in equation (5) as follows:

$$ \frac{0.408}{\left(0.00813 \mathrm{~mol} / \mathrm{dm}^{3}\right)^{\frac{1}{2}} \times 590 \mathrm{~s}}=k_{\mathrm{A}_{1}} $$

Solve for \(k_{\mathrm{A}_{i}}\) :

$$ k_{A_{1}}=7.67 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s} $$

For pair 2-

Substitute \(t_{\alpha}\) as \(665 \mathrm{~s}\) and \([\mathrm{A}]_{0}\) as \(0.00644 \mathrm{~mol} / \mathrm{dm}^{3}\) in equation (5) as follows:

$$ \frac{0.408}{\left(0.00644 \mathrm{~mol} / \mathrm{dm}^{3}\right)^{\frac{1}{2}} \times 665 \mathrm{~s}}=k_{\mathrm{A}_{2}} $$

Solve for \(k_{A_{2}}\) :

$$ k_{A_{2}}=7.64 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s} $$

For pair 3-

Substitute \(t_{a}\) as \(900 \mathrm{~s}\) and \([\mathrm{A}]_{0}\) as \(0.00310 \mathrm{~mol} / \mathrm{dm}^{3}\) in equation (5) as follows:

$$ \frac{0.408}{\left(0.00310 \mathrm{~mol} / \mathrm{dm}^{3}\right)^{\frac{1}{2}} \times 900 \mathrm{~s}}=k_{A_{3}} $$

Solve for \(k_{\mathrm{A}}\) :

$$ k_{\mathrm{A}_{3}}=8.14 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s} $$

For pair 4-

Substitute \(t_{a}\) as \(1140 \mathrm{~s}\) and \([\mathrm{A}]_{0}\) as \(0.00188 \mathrm{~mol} / \mathrm{dm}^{3}\) in equation \((5)\) as follows:

$$ \frac{0.408}{\left(0.00188 \mathrm{~mol} / \mathrm{dm}^{3}\right)^{\frac{1}{2}} \times 1140 \mathrm{~s}}=k_{\Lambda_{4}} $$

Solve for \(k_{\mathrm{A}_{4}}:\)

$$ k_{\mathrm{A}_{4}}=8.25 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s} $$

Take average of rate constant values of all four pairs as \(k_{\mathrm{A}}\) :

$$ k_{\mathrm{A}}=\frac{k_{\mathrm{A}_{1}}+k_{\mathrm{A}_{2}}+k_{\mathrm{A}_{\mathrm{B}}}+k_{\mathrm{A}_{4}}}{4} $$

Substitute \(k_{A_{1}}\) as \(7.67 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s}^{,}, k_{\mathrm{A}_{2}}\) as \(7.64 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s}^{\prime}, k_{\mathrm{A}}\), as \(8.14 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s}\) and \(k_{\mathrm{A}_{4}}\) and \(8.25 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s}^{\text {in the above expression as }}\) follows:

$$ \begin{aligned} k_{\mathrm{A}} &=\frac{\left[\left(7.67 \times 10^{-3}\right)+\left(7.64 \times 10^{-3}\right)+\left(8.14 \times 10^{-3}\right)+\left(8.25 \times 10^{-3}\right)\right] \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s}}{4} \\ &=7.9 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s} \end{aligned} $$

Therefore, the value of \(k_{\mathrm{A}}\) is \(7.9 \times 10^{-3} \mathrm{dm}^{\frac{3}{2}} / \mathrm{mol}^{\frac{1}{2}}-\mathrm{s}\).

Add your Solution
Textbook Solutions and Answers Search